login
A356437
a(n) = n! * Sum_{k=1..n} sigma_k(k)/k.
3
1, 7, 77, 1946, 84754, 6202524, 636369348, 89979720144, 16431405256656, 3796658174518560, 1077102230236529760, 368915006390671969920, 149873555740938949215360, 71297150722148582901815040, 39244301012876892023553235200
OFFSET
1,2
FORMULA
E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1 - (k*x)^k)/k.
a(n) ~ n! * n^(n-1). - Vaclav Kotesovec, Aug 07 2022
MATHEMATICA
Table[n! * Sum[DivisorSigma[k, k]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 07 2022 *)
PROG
(PARI) a(n) = n!*sum(k=1, n, sigma(k, k)/k);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-(k*x)^k)/k)/(1-x)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 07 2022
STATUS
approved