login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112213
McKay-Thompson series of class 88A for the Monster group.
1
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 14, 15, 16, 19, 21, 22, 24, 27, 31, 34, 36, 40, 46, 48, 52, 58, 64, 69, 74, 82, 91, 98, 104, 115, 127, 136, 145, 159, 174, 186, 200, 218, 238, 254, 272, 296, 322, 343, 366, 398, 430, 460, 492, 531
OFFSET
0,9
COMMENTS
Also McKay-Thompson series of class 88B for Monster. - Michel Marcus, Feb 19 2014
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/2)*((eta(q^2)*eta(q^22))^2/(eta(q)*eta(q^4)*eta(q^11)* eta(q^44))) in powers of q. - G. C. Greubel, Jul 02 2018
a(n) ~ exp(sqrt(2*n/11)*Pi) / (2^(5/4) * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 02 2018
EXAMPLE
T88A = 1/q +q +q^5 +q^7 +q^9 +q^11 +q^13 +2*q^15 +2*q^17 +...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/2)*((eta[q^2]*eta[q^22])^2/ (eta[q]*eta[q^4]*eta[q^11]*eta[q^44])); a:= CoefficientList[Series[A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 02 2018 *)
PROG
(PARI) q='q+O('q^70); A = ((eta(q^2)*eta(q^22))^2/(eta(q)*eta(q^4) *eta(q^11)*eta(q^44))); Vec(A) \\ G. C. Greubel, Jul 02 2018
CROSSREFS
Sequence in context: A055034 A362739 A112184 * A238957 A238970 A085755
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved