The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058560 McKay-Thompson series of class 20e for Monster. 1
 1, 2, -1, 0, 3, 0, 3, -4, 0, 2, 3, 8, -4, 0, 9, 4, 12, -10, 0, 8, 10, 26, -14, 0, 23, 10, 35, -28, 0, 26, 26, 64, -39, 0, 57, 28, 89, -66, 0, 64, 56, 150, -91, 0, 125, 66, 202, -148, 0, 148, 120, 320, -198, 0, 259, 144, 429, -302, 0, 312, 243, 648, -405, 0, 511, 292, 860, -600, 0, 622 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of (T10b + 4)^(1/2), where T10b = A058103, in powers of q. - G. C. Greubel, Jun 21 2018 EXAMPLE T20e = 1/q + 2*q - q^3 + 3*q^7 + 3*q^11 - 4*q^13 + 2*q^17 + 3*q^19 + ... MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 100;  A:= eta[q]/eta[q^25]; B:= (eta[q^2]*eta[q^25])/(eta[q]*eta[q^50]); c := ((eta[q]*eta[q^2])/( eta[q^5]*eta[q^10]))^2; d:= ((eta[q^5]*eta[q^10])/( eta[q^25]*eta[q^50]) )^2; T10b := (2 + c + 5*(c/(A)^2)*(1 - 1/B)^2 + 25/d); a:= CoefficientList[Series[(q*(T10b + 4) + O[q]^nmax)^(1/2), {q, 0, nmax}], q]; Table[a[[n]], {n, 1, nmax}] (* G. C. Greubel, Jun 21 2018, fixed by Vaclav Kotesovec, Jul 03 2018 *) CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Sequence in context: A210869 A123973 A098493 * A131047 A143714 A004172 Adjacent sequences:  A058557 A058558 A058559 * A058561 A058562 A058563 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS Terms a(12) onward added by G. C. Greubel, Jun 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 05:20 EDT 2020. Contains 334837 sequences. (Running on oeis4.)