login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058573 McKay-Thompson series of class 24C for Monster. 4
1, 0, 0, 2, -1, -2, 4, -2, -2, 6, -4, -4, 10, -6, -8, 16, -9, -10, 24, -14, -16, 36, -20, -24, 53, -30, -32, 76, -43, -48, 108, -60, -68, 150, -84, -92, 206, -114, -128, 280, -155, -172, 376, -208, -228, 504, -276, -304, 668, -366, -400, 878, -480, -524, 1148 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,4

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of -1 + (eta(q^2)*eta(q^4))^2/(eta(q)*eta(q^3)*eta(q^8)* eta(q^24)) in powers of q. - G. C. Greubel, Jun 04 2018

EXAMPLE

T24C = 1/q + 2*q^2 - q^3 - 2*q^4 + 4*q^5 - 2*q^6 - 2*q^7 + 6*q^8 - 4*q^9 - ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-1 + (eta[q^2]*eta[q^4])^2/(eta[q]*eta[q^3]*eta[q^8]*eta[q^24])), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 04 2018 *)

PROG

(PARI) q='q+O('q^70); F= -1 + (eta(q^2)*eta(q^4))^2/(eta(q)*eta(q^3) *eta(q^8)*eta(q^24))/q; Vec(F) \\ G. C. Greubel, Jun 04 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A184990 (same sequence except for n=0).

Sequence in context: A247321 A152251 A144025 * A184990 A206299 A276053

Adjacent sequences:  A058570 A058571 A058572 * A058574 A058575 A058576

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 00:56 EST 2019. Contains 319365 sequences. (Running on oeis4.)