login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206299 McKay-Thompson series of class 24C for the Monster group with a(0) = -1. 2
1, -1, 0, 2, -1, -2, 4, -2, -2, 6, -4, -4, 10, -6, -8, 16, -9, -10, 24, -14, -16, 36, -20, -24, 53, -30, -32, 76, -43, -48, 108, -60, -68, 150, -84, -92, 206, -114, -128, 280, -155, -172, 376, -208, -228, 504, -276, -304, 668, -366, -400, 878, -480, -524, 1148 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (1/q) * chi(q) * chi(q^12)^3 / (chi(q^3)^3 * chi(q^4)) in powers of q where chi() is a Ramanujan theta function.

Expansion of c(q^2)*c(q^4)/(c(q)*c(q^8)) in powers of q where c() is a cubic AGM theta function.

Euler transform of period 24 sequence [ -1, 0, 2, 1, -1, 0, -1, 0, 2, 0, -1, -2, -1, 0, 2, 0, -1, 0, -1, 1, 2, 0, -1, 0, ...].

a(n) = A058573(n) unless n = 0.

Expansion of eta(q)*eta(q^6)^3*eta(q^8)*eta(q^12)^3/(eta(q^2)*eta(q^3)^3* eta(q^4)*eta(q^24)^3) in powers of q. - G. C. Greubel, Jun 20 2018

EXAMPLE

1/q - 1 + 2*q^2 - q^3 - 2*q^4 + 4*q^5 - 2*q^6 - 2*q^7 + 6*q^8 - 4*q^9 + ...

MATHEMATICA

QP = QPochhammer; s = QP[q]*QP[q^6]^3*QP[q^8]*(QP[q^12]^3/(QP[q^2]* QP[q^3]^3*QP[q^4]*QP[q^24]^3)) + O[q]^60; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 16 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 * eta(x^8 + A) * eta(x^12 + A)^3 / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^4 +A ) * eta(x^24 + A)^3), n))}

CROSSREFS

Cf. A058573, A206298, A184990.

Sequence in context: A144025 A058573 A184990 * A276053 A117268 A279709

Adjacent sequences:  A206296 A206297 A206298 * A206300 A206301 A206302

KEYWORD

sign

AUTHOR

Michael Somos, Feb 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 11:03 EDT 2018. Contains 316224 sequences. (Running on oeis4.)