login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058574
McKay-Thompson series of class 24D for the Monster group.
2
1, -1, -1, -1, 2, 1, -2, 1, 3, 0, -4, -1, 5, -1, -7, 0, 8, 0, -10, 1, 13, 2, -16, 0, 20, -3, -24, -2, 30, 2, -36, 4, 43, 0, -52, -3, 61, -2, -73, -1, 86, 1, -102, 3, 120, 4, -140, -1, 165, -8, -192, -5, 224, 6, -260, 10, 301, 2, -348, -7, 401, -7, -462, -2, 530, 2, -608
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-x) * chi(-x^2) * chi(-x^3) * chi(-x^6) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 06 2011
Expansion of q^(1/2) * eta(q) * eta(q^3) / (eta(q^4) * eta(q^12)) in powers of q. - Michael Somos, Mar 06 2011
Euler transform of period 12 sequence [ -1, -1, -2, 0, -1, -2, -1, 0, -2, -1, -1, 0, ...]. - Michael Somos, Mar 06 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 4 / f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 06 2011
Convolution square is A187196. a(n) = (-1)^n * A112165(n). - Michael Somos, Mar 06 2011
EXAMPLE
T24D = 1/q - q - q^3 - q^5 + 2*q^7 + q^9 - 2*q^11 + q^13 + 3*q^15 - 4*q^19 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q]*(QP[q^3]/(QP[q^4]*QP[q^12])) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, from 2nd formula *)
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2)* eta[q]*eta[q^3]/(eta[q^4]*eta[q^12]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)
PROG
(PARI) q='q+O('q^50); A=eta(q)*eta(q^3)/(eta(q^4)*eta(q^12)); Vec(A) \\ G. C. Greubel, Jun 14 2018
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved