login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121373 Expansion of f(x) = f(x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. 1360
1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = -x^3, b = -x. - Michael Somos, Jul 11 2012

Number 5 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Quintuple Product Identity

FORMULA

Expansion of q^(-1/4) * (theta_1( Pi/12, q) + theta_2( Pi/12, q)) / sqrt(6) in powers of q^6. - Michael Somos, Jul 06 2013

Expansion of q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4)) in powers of q.

Euler transform of period 4 sequence [1, -2, 1, -1, ...].

a(n) = b(24*n + 1) where b() is multiplicative with b(p^2e) = (-1)^e if p == 7, 11, 13, 17 (mod 24), b(p^2e) = +1 if p == 1, 5, 19, 23 (mod 24) and b(p^(2e-1)) = b(2^e) = b(3^e) = 0 if e>0.

G.f.: (1 + x) * (1 - x^2) * (1 + x^3) * (1 - x^4) * ...

G.f.: 1 + x - x^2*(1 + x) + x^3*(1 + x)*(1 - x^2) - x^4*(1 + x)*(1 - x^2)*(1 + x^3) + ...

a(5*n + 3) = a(5*n + 4) = 0. a(25*n + 1) = a(n).

G.f.: Sum_{k>=0} a(k) * x^(24*k + 1) = Sum_{k in Z} (-1)^floor((k+1)/2) * x^(6*k + 1)^2.

a(n) = (-1)^n * A010815(n). |a(n)| = A080995(n).

Expansion of f(-x^5, -x^7) + x * f(-x, -x^11) in powers of x. - Michael Somos, Jan 10 2015

G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(1/2) (t/i)^(1/2) f(t) where q = exp(2 Pi i t). - Michael Somos, May 05 2016

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 08 2018

EXAMPLE

G.f. = 1 + x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 + x^35 + ...

G.f. = q + q^25 - q^49 - q^121 - q^169 - q^289 + q^361 + q^529 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ Product[ 1 - (-x)^k, {k, n}], {x, 0, n}]; (* Michael Somos, Nov 14 2011 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ -x], {x, 0, n}]; (* Michael Somos, Jul 06 2013 *)

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 1, Pi/12, x^4] + EllipticTheta[ 2, Pi/12, x^4]) / Sqrt[6], {x, 0, 24 n + 1}] // Simplify; (* Michael Somos, Mar 20 2015 *)

PROG

(PARI) {a(n) = if( issquare( 24*n + 1, &n), kronecker( 6, n))};

(PARI) {a(n) = if( n<0, 0, polcoeff( eta( -x + x * O(x^n)), n))};

CROSSREFS

Cf. A010815, A080995, A247133, A247223.

Sequence in context: A206958 A206959 A080995 * A199918 A229894 A256538

Adjacent sequences: A121370 A121371 A121372 * A121374 A121375 A121376

KEYWORD

sign

AUTHOR

Michael Somos, Jul 24 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:41 EST 2022. Contains 358649 sequences. (Running on oeis4.)