OFFSET
0,2
COMMENTS
REFERENCES
T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
D. Foata and G.-N. Han, Jacobi and Watson Identities Combinatorially Revisited
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 13.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/12) * (eta(q) / eta(q^2))^2 in powers of q.
Euler transform of period 2 sequence [ -2, 0, ...]. - Michael Somos, Sep 10 2005
Expansion of chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A022567.
G.f.: Product_{k>0} (1 + x^k)^-2.
a(n) = (-1)^n * A073252(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
EXAMPLE
G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 4*x^5 + 5*x^6 - 6*x^7 + 9*x^8 + ...
T24J = 1/q - 2*q^11 + q^23 - 2*q^35 + 4*q^47 - 4*q^59 + 5*q^71 - 6*q^83 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}]^-2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^2, n))}; /* Michael Somos, Sep 10 2005 */
CROSSREFS
KEYWORD
sign,nice,easy
AUTHOR
STATUS
approved