This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058509 McKay-Thompson series of class 15B for Monster. 2
 1, 0, -1, 4, -3, -2, 11, -6, -11, 20, -15, -16, 43, -24, -32, 76, -48, -58, 144, -84, -97, 238, -144, -172, 398, -234, -279, 636, -372, -428, 1012, -582, -678, 1564, -906, -1028, 2389, -1362, -1576, 3560, -2046, -2320, 5290, -2988, -3407, 7700, -4371, -4928 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,4 LINKS G. C. Greubel, Table of n, a(n) for n = -1..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of 2 + (eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)))^2 in powers of q. - G. C. Greubel, Jun 14 2018 EXAMPLE T15B = 1/q - q + 4*q^2 - 3*q^3 - 2*q^4 + 11*q^5 - 6*q^6 - 11*q^7 + 20*q^8 + ... MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; b:= (eta[q]*eta[q^5]/(eta[q^3]* eta[q^15]))^2; a:= CoefficientList[Series[q*(2 + b), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Feb 13 2018 *) PROG (PARI) q='q+O('q^50); A = (eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)))^2/q; Vec(2 + A) \\ G. C. Greubel, Jun 14 2018 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Cf. A093067 (same sequence except for n=0). Sequence in context: A084483 A266150 A276612 * A105109 A227182 A065367 Adjacent sequences:  A058506 A058507 A058508 * A058510 A058511 A058512 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS More terms from Michel Marcus, Feb 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 04:43 EST 2019. Contains 319265 sequences. (Running on oeis4.)