login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058507 McKay-Thompson series of class 14c for Monster. 1
1, 5, 13, 37, 71, 142, 250, 457, 750, 1263, 2035, 3229, 4988, 7649, 11488, 17092, 25081, 36531, 52491, 74950, 105860, 148675, 206914, 286401, 393536, 537848, 730398, 987086, 1326645, 1774901, 2363069, 3133327, 4135942, 5438861, 7123396, 9297096, 12089350, 15669436 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of A +7*q/A, where A = q^(1/2)*(eta(q)/eta(q^7))^2, in powers of q. - G. C. Greubel, Jun 20 2018

a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (2^(3/4) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018

EXAMPLE

T14c = 1/q + 5*q + 13*q^3 + 37*q^5 + 71*q^7 + 142*q^9 + 250*q^11 + ...

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q]/eta[q^7])^2; a:= SeriesCoefficient[A + 7*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 0, 50}] (* G. C. Greubel, Jun 20 2018 *)

PROG

(PARI) q='q+O('q^50); A= (eta(q)/eta(q^7))^2; Vec(A +7*q/A) \\ G. C. Greubel, Jun 20 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Sequence in context: A107144 A137815 A089523 * A111057 A019268 A083413

Adjacent sequences:  A058504 A058505 A058506 * A058508 A058509 A058510

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

Terms a(12) onward added by G. C. Greubel, Jun 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:13 EST 2019. Contains 319310 sequences. (Running on oeis4.)