This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058610 McKay-Thompson series of class 28a for Monster. 1
 1, 1, 5, 5, 11, 10, 26, 25, 46, 55, 91, 101, 156, 181, 272, 316, 457, 531, 747, 862, 1188, 1387, 1858, 2177, 2864, 3348, 4334, 5078, 6485, 7589, 9605, 11215, 14026, 16365, 20308, 23656, 29094, 33876, 41359, 48068, 58266, 67645, 81537, 94476, 113269, 131052, 156311, 180518 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,3 LINKS G. C. Greubel, Table of n, a(n) for n = -1..2500 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994). FORMULA Expansion of A - q/A, where A = q^(1/2)*(eta(q^2)*eta(q^7)/(eta(q)* eta(q^14)))^2, in powers of q. - G. C. Greubel, Jun 22 2018 a(n) ~ exp(2*Pi*sqrt(n/7)) / (2 * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018 EXAMPLE T28a = 1/q + q + 5*q^3 + 5*q^5 + 11*q^7 + 10*q^9 + 26*q^11 + 25*q^13 + ... MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]*eta[q^7]/(eta[q]*eta[q^14]))^2; a:= CoefficientList[Series[(A - q/A), {q, 0, 100}], q]; Table[a[[n]], {n, 1, 70}] (* G. C. Greubel, Jun 22 2018 *) PROG (PARI) q='q+O('q^50); A = (eta(q^2)*eta(q^7)/(eta(q)*eta(q^14)))^2; Vec(A - q/A) \\ G. C. Greubel, Jun 22 2018 CROSSREFS Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. Sequence in context: A151728 A130889 A184827 * A143427 A287996 A239355 Adjacent sequences:  A058607 A058608 A058609 * A058611 A058612 A058613 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 27 2000 EXTENSIONS Terms a(12) onward added by G. C. Greubel, Jun 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 11:50 EST 2019. Contains 319271 sequences. (Running on oeis4.)