login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058613 McKay-Thompson series of class 30B for the Monster group with a(0) = 0. 0
1, 0, 4, 2, 6, 10, 15, 18, 37, 30, 57, 70, 105, 114, 178, 192, 285, 346, 465, 522, 751, 830, 1125, 1328, 1708, 1974, 2600, 2964, 3795, 4424, 5541, 6390, 8090, 9230, 11424, 13308, 16225, 18714, 22941, 26216, 31794, 36730, 44020, 50544, 60671, 69360, 82560, 94952 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

REFERENCES

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

LINKS

Table of n, a(n) for n=-1..46.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

G.f. T30B = 3 + e30A + 1 / e30A = 1 + e30C + 4 / e30C = -2 + e30D + 1 / e30D = -1 + e30F + 1 / e30F where e30A is g.f. A205826, e30C is g.f. A132321, e30D is g.f. A205962, and e30F is g.f. A205977.

Convolution square of A058732. - Michael Somos, Feb 02 2012

EXAMPLE

T30B = 1/q + 4*q + 2*q^2 + 6*q^3 + 10*q^4 + 15*q^5 + 18*q^6 + 37*q^7 + ...

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^15 + A) * eta(x^30 + A)); polcoeff( -x + A + x^2 / A, n))} /* Michael Somos, Feb 02 2012 */

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, A058732, A132321, A205826, A205962, A205977.

Sequence in context: A134239 A136390 A019610 * A053227 A083760 A099507

Adjacent sequences:  A058610 A058611 A058612 * A058614 A058615 A058616

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 27, 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 12:03 EDT 2014. Contains 240983 sequences.