login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112167 McKay-Thompson series of class 24j for the Monster group. 1
1, -2, 0, 0, 0, 0, -2, -4, 0, 0, 0, 0, 1, -6, 0, 0, 0, 0, -2, -12, 0, 0, 0, 0, 4, -18, 0, 0, 0, 0, -4, -28, 0, 0, 0, 0, 5, -44, 0, 0, 0, 0, -6, -64, 0, 0, 0, 0, 9, -92, 0, 0, 0, 0, -12, -132, 0, 0, 0, 0, 13, -186, 0, 0, 0, 0, -16, -256, 0, 0, 0, 0, 21, -352, 0, 0, 0, 0, -26, -476, 0, 0, 0, 0, 29, -638, 0, 0, 0, 0, -36 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of A - 2*q/A, where A = q^(1/2)*(eta(q^6)/eta(q^12))^2, in powers of q. - G. C. Greubel, Jun 25 2018

EXAMPLE

T24j = 1/q - 2*q - 2*q^11 - 4*q^13 + q^23 - 6*q^25 - 2*q^35 - 12*q^37 + ...

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^6]/eta[q^12])^2; a:= CoefficientList[Series[A - 2*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 25 2018 *)

PROG

(PARI) q='q+O('q^80); A = (eta(q^6)/eta(q^12))^2; Vec(A - 2*q/A) \\ G. C. Greubel, Jun 25 2018

CROSSREFS

Sequence in context: A174469 A297934 A112166 * A230571 A037213 A218234

Adjacent sequences:  A112164 A112165 A112166 * A112168 A112169 A112170

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 01:36 EST 2019. Contains 319260 sequences. (Running on oeis4.)