login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134783
McKay-Thompson series of class 15A for the Monster group with a(0) = 1.
3
1, 1, 8, 22, 42, 70, 155, 246, 421, 722, 1101, 1730, 2761, 4062, 6106, 9040, 13065, 18806, 27081, 37950, 53183, 74290, 102213, 140048, 191612, 258426, 348300, 467484, 622023, 825016, 1090957, 1432290, 1875930, 2448610, 3179136, 4114996
OFFSET
-1,3
LINKS
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
FORMULA
Associated with permutations in Mathieu group M24 of shape (15)(5)(3)(1).
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A058508(n) unless n=0. Convolution with A030184 is A028998.
a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of A + 3 + 9/A, where A = (eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)) ))^2, in powers of q. - G. C. Greubel, Jun 17 2018
EXAMPLE
G.f. = 1/q + 1 + 8*q + 22*q^2 + 42*q^3 + 70*q^4 + 155*q^5 + 246*q^6 + 421*q^7 + ...
MATHEMATICA
QP = QPochhammer; A = q^2*O[q]^40; A = (QP[q + A]*(QP[q^5 + A]/(QP[q^3 + A]*QP[q^15 + A])))^2/q; s = q*(3 + A + 9/A); CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
a[ n_] := With[{A = (QPochhammer[ q^3] QPochhammer[ q^5] / (QPochhammer[ q] QPochhammer[ q^15]))^3 /q}, SeriesCoefficient[ -2 + A - 1/A, {q, 0, n}]]; (* Michael Somos, May 05 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^2 * O(x^n); A = (eta(x + A) * eta(x^5 + A) / (eta(x^3 + A) * eta(x^15 + A)))^2 / x; polcoeff( (3 + A + 9 / A), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 22 2007
STATUS
approved