OFFSET
-1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
FORMULA
Associated with permutations in Mathieu group M24 of shape (15)(5)(3)(1).
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = f(t) where q = exp(2 Pi i t).
a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of A + 3 + 9/A, where A = (eta(q)*eta(q^5)/(eta(q^3)*eta(q^15)) ))^2, in powers of q. - G. C. Greubel, Jun 17 2018
EXAMPLE
G.f. = 1/q + 1 + 8*q + 22*q^2 + 42*q^3 + 70*q^4 + 155*q^5 + 246*q^6 + 421*q^7 + ...
MATHEMATICA
QP = QPochhammer; A = q^2*O[q]^40; A = (QP[q + A]*(QP[q^5 + A]/(QP[q^3 + A]*QP[q^15 + A])))^2/q; s = q*(3 + A + 9/A); CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
a[ n_] := With[{A = (QPochhammer[ q^3] QPochhammer[ q^5] / (QPochhammer[ q] QPochhammer[ q^15]))^3 /q}, SeriesCoefficient[ -2 + A - 1/A, {q, 0, n}]]; (* Michael Somos, May 05 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^2 * O(x^n); A = (eta(x + A) * eta(x^5 + A) / (eta(x^3 + A) * eta(x^15 + A)))^2 / x; polcoeff( (3 + A + 9 / A), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 22 2007
STATUS
approved