login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052240
McKay-Thompson series of class 7B for the Monster group.
3
1, 0, 2, 8, -5, -4, -10, 12, -7, 8, 46, -36, -26, -44, 46, -28, 42, 188, -132, -96, -167, 172, -98, 120, 596, -420, -286, -492, 496, -280, 368, 1680, -1151, -792, -1332, 1320, -735, 916, 4264, -2908, -1960, -3252, 3200, -1764, 2230, 10104
OFFSET
-1,3
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of (eta(q) / eta(q^7))^4 + 4 in powers of q.
EXAMPLE
T7B = 1/q + 2*q + 8*q^2 - 5*q^3 - 4*q^4 - 10*q^5 + 12*q^6 - 7*q^7 + 8*q^8 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q]/QP[q^7])^4 + 4*q + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015 *)
PROG
(PARI) q='q+O('q^30); Vec(4*q + (eta(q)/eta(q^7))^4) \\ G. C. Greubel, May 05 2018
CROSSREFS
Essentially same as A030181.
Sequence in context: A021782 A342977 A155808 * A035490 A248936 A019678
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 25 2000
STATUS
approved