login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212624 Number of vertices in all independent vertex subsets of the rooted tree with Matula-Goebel number n. 10
1, 2, 5, 5, 10, 10, 13, 13, 20, 20, 20, 23, 23, 23, 38, 33, 23, 41, 33, 45, 45, 38, 41, 55, 71, 41, 74, 48, 45, 78, 38, 81, 71, 45, 82, 92, 55, 55, 78, 105, 41, 85, 48, 82, 137, 74, 78, 131, 98, 146, 82, 85, 81, 155, 130, 108, 105, 78, 45, 173, 92, 71, 153, 193, 141, 141, 55, 98, 137, 157, 105, 212 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n) = Sum_{k>=0} k*A212623(n,k).
REFERENCES
F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
LINKS
E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288.
FORMULA
In A212623 one finds the generating polynomial P(n,x) with respect to the number of vertices of the independent vertex subsets of the rooted tree with Matula-Goebel number n. We have a(n) = subs(x=1, (d/dx)P(n,x)).
EXAMPLE
a(5)=10 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}. The total number of vertices is 10.
MAPLE
with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: a := proc (n) options operator, arrow: subs(x = 1, diff(P(n), x)) end proc: seq(a(n), n = 1 .. 100);
CROSSREFS
Sequence in context: A288726 A344572 A265129 * A351475 A034387 A349803
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 01 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 01:57 EDT 2024. Contains 370952 sequences. (Running on oeis4.)