login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058101 McKay-Thompson series of class 10E for Monster. 5
1, 0, 1, 2, 2, -2, -1, 0, -4, -2, 5, 2, 0, 8, 2, -8, -3, -2, -14, -6, 14, 6, 4, 24, 12, -24, -11, -4, -40, -16, 38, 16, 5, 62, 24, -60, -24, -10, -94, -40, 91, 38, 18, 144, 62, -136, -57, -24, -214, -88, 201, 82, 30, 308, 122, -288, -117, -48, -440, -180, 410, 168, 74, 624, 262, -578, -238, -96, -874, -356, 804 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,4

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

EXAMPLE

T10E = 1/q + q + 2*q^2 + 2*q^3 - 2*q^4 - q^5 - 4*q^7 - 2*q^8 + 5*q^9 + 2*q^10 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; A058101:= CoefficientList[Series[ q*(3 + (eta[q]^3*eta[q^5])/(eta[q^2]*eta[q^10]^3)), {q, 0, 60}], q]; Table[A058101[[n]], {n, 1, 50}] (* G. C. Greubel, May 28 2018 *)

PROG

(PARI) q='q+O('q^60); {h =(eta(q)^3*eta(q^5)/(eta(q^2)*eta(q^10)^3))/q};  Vec(3 + h) \\ G. C. Greubel, May 28 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A138516 (same sequence except for n=0).

Sequence in context: A223903 A112159 * A132980 A106823 A160096 A029446

Adjacent sequences:  A058098 A058099 A058100 * A058102 A058103 A058104

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 16:24 EST 2018. Contains 318229 sequences. (Running on oeis4.)