OFFSET
-1,2
COMMENTS
Given g.f. A(x), B(q) = 3 + A(q) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u + v)^3 + u*v*(27 + 9*(u + v) - u*v). - Michael Somos, Jun 16 2004
Expansion of eta(q^3)^12 / (eta(q) * eta(q^9))^6 - 3 in powers of q.
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra, Vol. 22, No. 13 (1994), 5175-5193.
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra, Vol. 18, No. 1 (1990), 253-278.
FORMULA
a(n) ~ exp(4*Pi*sqrt(n)/3) / (sqrt(6)*n^(3/4)). - Vaclav Kotesovec, May 01 2017
EXAMPLE
G.f. = 1/q + 3 + 27*q + 86*q^2 + 243*q^3 + 594*q^4 + 1370*q^5 + 2916*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ -3 + (1/q) (QPochhammer[ q^3]^2 / (QPochhammer[ q] QPochhammer[ q^9]))^6, {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A)^12 / (eta(x + A) * eta(x^9 + A))^6 - 3*x, n))}; /* Michael Somos, Jun 16 2004 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved