login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045491
McKay-Thompson series of class 9A for the Monster group with a(0) = 3.
3
1, 3, 27, 86, 243, 594, 1370, 2916, 5967, 11586, 21870, 39852, 71052, 123444, 210654, 352480, 581013, 942786, 1510254, 2388204, 3734964, 5777788, 8852004, 13434984, 20218395, 30177684, 44704413, 65743348, 96033357, 139368816
OFFSET
-1,2
COMMENTS
Given g.f. A(x), B(q) = 3 + A(q) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u + v)^3 + u*v*(27 + 9*(u + v) - u*v). - Michael Somos, Jun 16 2004
Expansion of eta(q^3)^12 / (eta(q) * eta(q^9))^6 - 3 in powers of q.
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra, Vol. 22, No. 13 (1994), 5175-5193.
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra, Vol. 18, No. 1 (1990), 253-278.
FORMULA
a(n) ~ exp(4*Pi*sqrt(n)/3) / (sqrt(6)*n^(3/4)). - Vaclav Kotesovec, May 01 2017
EXAMPLE
G.f. = 1/q + 3 + 27*q + 86*q^2 + 243*q^3 + 594*q^4 + 1370*q^5 + 2916*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ -3 + (1/q) (QPochhammer[ q^3]^2 / (QPochhammer[ q] QPochhammer[ q^9]))^6, {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A)^12 / (eta(x + A) * eta(x^9 + A))^6 - 3*x, n))}; /* Michael Somos, Jun 16 2004 */
CROSSREFS
Cf. A007266.
Sequence in context: A302725 A166102 A316754 * A318908 A343135 A343105
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved