login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058559 McKay-Thompson series of class 20d for Monster. 3
1, 0, 3, -4, 4, -4, 7, -12, 13, -16, 22, -28, 38, -44, 55, -72, 83, -104, 129, -156, 187, -220, 273, -328, 384, -452, 539, -652, 757, -880, 1041, -1220, 1428, -1652, 1924, -2244, 2585, -2992, 3458, -3992, 4581, -5244, 6053, -6936, 7910, -9024, 10303, -11784, 13380, -15176, 17257, -19584 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..5000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of sqrt( 4 + (eta(q)*eta(q^5)/(eta(q^2)*eta(q^10)))^4 ) in powers of q. - G. C. Greubel, Jun 14 2018

a(n) ~ -(-1)^n * exp(sqrt(2*n/5)*Pi) / (2^(5/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018

EXAMPLE

T20d = 1/q + 3*q^3 - 4*q^5 + 4*q^7 - 4*q^9 + 7*q^11 - 12*q^13 + 13*q^15 - ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q];  nmax = 60; T10B := 4 + (eta[q]* eta[q^5]/(eta[q^2]*eta[q^10]))^4; a:= CoefficientList[Series[(q*T10B + O[q]^nmax)^(1/2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Sequence in context: A283972 A213509 A112180 * A232092 A185271 A158012

Adjacent sequences:  A058556 A058557 A058558 * A058560 A058561 A058562

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

Terms a(12) onward added by G. C. Greubel, Jun 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 14:30 EDT 2019. Contains 328301 sequences. (Running on oeis4.)