login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082304 McKay-Thompson series of class 16d for the Monster group. 3
1, -2, -1, 2, 3, -2, -4, 4, 5, -8, -8, 10, 11, -12, -15, 18, 22, -26, -29, 34, 38, -42, -51, 56, 66, -78, -85, 98, 109, -120, -139, 156, 176, -202, -222, 250, 279, -306, -346, 384, 429, -482, -530, 590, 650, -714, -797, 876, 972, -1080, -1180, 1304, 1431, -1562, -1728, 1892, 2078, -2290, -2496 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Table of n, a(n) for n=0..58.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275. see page 273.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of phi(-q) / psi(q^2) in powers of q where phi(), psi() are Ramanujan theta functions.

Expansion of q^(1/4) * (eta(q) / eta(q^4))^2 in powers of q.

Euler transform of period 4 sequence [ -2, -2, -2, 0, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A001936. - Michael Somos, Jul 04 2014

Given g.f. A(x), then B(q) = A(q)^4 / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - u * (16 + u) * (16 + v). - Michael Somos, Jul 04 2014

Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (4 + u*v)^2. - Michael Somos, Aug 13 2007

Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u*v * (16 + u^2*v^2)^2 - (u+v)^2 * (u^2 - 6*u*v + v^2)^2. - Michael Somos, Jul 04 2014

G.f.: Product_{k>0} ((1 - x^k) / (1 - x^(4*k)))^2.

a(n) = (-1)^n * A029839(n). Convolution inverse of A001936. - Michael Somos, Jul 04 2014

EXAMPLE

T16d = 1/q - 2*q^3 - q^7 + 2*q^11 + 3*q^15 - 2*q^19 - 4*q^23 + 4*q^27 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^4])^2, {x, 0, n}]; (* Michael Somos, Jul 04 2014 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^4 + A))^2, n))};

CROSSREFS

Cf. A001936, A029839.

Sequence in context: A096920 A087154 A029839 * A250099 A241949 A214720

Adjacent sequences:  A082301 A082302 A082303 * A082305 A082306 A082307

KEYWORD

sign

AUTHOR

Michael Somos, Apr 08 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 22:51 EST 2016. Contains 278957 sequences.