OFFSET
1,2
COMMENTS
Antidiagonal sums = A006578. - Reinhard Zumkeller, Nov 17 2011
LINKS
Peter Kagey, Antidiagonals n = 1..126 of triangle, flattened
FORMULA
From Robert Israel, Jul 22 2016: (Start)
G.f. as table: G(x,y) = x*y*(1-3*x*y+x*y^2+x^2*y)/((1-x*y)*(1-x)^2*(1-y)^2).
G.f. flattened: (1-x)^(-2)*(x^2 + Sum_{j >= 0} x^(2*j^2) *(x+x^2 -2*x^(j+2)-2*x^(-j+2)+2*x^(2*j+2))). (End)
EXAMPLE
Table begins
1, 2, 3, 4, 5, ...
2, 2, 3, 4, 5, ...
3, 3, 3, 4, 5, ...
4, 4, 4, 4, 5, ...
...
MAPLE
seq(seq(max(r, d+1-r), r=1..d), d=1..15); # Robert Israel, Jul 22 2016
MATHEMATICA
Flatten[Table[Max[n-k+1, k], {n, 13}, {k, n, 1, -1}]] (* Alonso del Arte, Nov 17 2011 *)
PROG
(PARI) T(n, k) = max(n, k) \\ Charles R Greathouse IV, Feb 07 2017
(Magma) [Max(n-k+1, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 23 2019
(Sage) [[max(n-k+1, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 23 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> Maximum(n-k+1, k) ))); # G. C. Greubel, Jul 23 2019
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Robert Lozyniak
STATUS
approved