This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051125 Table T(n,k) = max{n,k} read by antidiagonals (n >= 1, k >= 1). 11
 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8, 7, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 8, 9, 10, 11, 12, 13, 14, 13 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Antidiagonal sums = A006578. - Reinhard Zumkeller, Nov 17 2011 LINKS Peter Kagey, Antidiagonals n = 1..126 of triangle, flattened FORMULA From Robert Israel, Jul 22 2016: (Start) G.f. as table: G(x,y) = x*y*(1-3*x*y+x*y^2+x^2*y)/((1-x*y)*(1-x)^2*(1-y)^2). G.f. flattened: (1-x)^(-2)*(x^2 + Sum_{j >= 0} x^(2*j^2) *(x+x^2 -2*x^(j+2)-2*x^(-j+2)+2*x^(2*j+2))). (End) EXAMPLE Table begins 1 2 3 4 5... 2 2 3 4 5... 3 3 3 4 5... 4 4 4 4 5... MAPLE seq(seq(max(r, d+1-r), r=1..d), d=1..15); # Robert Israel, Jul 22 2016 MATHEMATICA Flatten[Table[Max[n-k+1, k], {n, 13}, {k, n, 1, -1}]] (* Alonso del Arte, Nov 17 2011 *) PROG (PARI) T(n, k) = max(n, k) \\ Charles R Greathouse IV, Feb 07 2017 (MAGMA) [Max(n-k+1, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 23 2019 (Sage) [[max(n-k+1, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 23 2019 (GAP) Flat(List([1..15], n-> List([1..n], k-> Maximum(n-k+1, k) ))); # G. C. Greubel, Jul 23 2019 CROSSREFS Cf. A003056, A003983, A003984, A004197. Equals A003984(n) + 1. Sequence in context: A070081 A034883 A071647 * A321126 A244580 A131830 Adjacent sequences:  A051122 A051123 A051124 * A051126 A051127 A051128 KEYWORD nonn,tabl,easy,nice AUTHOR EXTENSIONS More terms from Robert Lozyniak STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 21:37 EDT 2019. Contains 328134 sequences. (Running on oeis4.)