This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003056 n appears n+1 times. Also table T(n,k) = n+k read by antidiagonals. 261
 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also triangle read by rows: T(n,k), n>=0, k>=0, in which n appears n+1 times in row n. - Omar E. Pol, Jul 15 2012 The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= n-1) by rows from left to right: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002 Number of terms in partition of n with greatest number of distinct terms. - Amarnath Murthy, May 20 2001 Summation table for (x+y) = (0+0),(0+1),(1+0),(0+2),(1+1),(2+0), ... Also the number of triangular numbers less than or equal to n, not counting 0 as triangular. - Robert G. Wilson v Permutation of A116939: a(n) = A116939(A116941(n)), a(A116942(n)) = A116939(n). - Reinhard Zumkeller, Feb 27 2006 Maximal size of partitions of n into distinct parts, see A000009. - Reinhard Zumkeller, Jun 13 2009 Also number of digits of A000462(n). - Reinhard Zumkeller, Mar 27 2011 a(n) = 2*n + 1 - A001614(n+1) = n + 1 - A122797(n+1). - Reinhard Zumkeller, Feb 12 2012 Also the maximum number of 1's contained in the list of hook-lengths of a partition of n. E.g., a(4)=2 because hooks of partitions of n=4 comprise {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} where the number of 1's in each is 1,2,1,2,1. Hence the maximum is 2. - T. Amdeberhan, Jun 03 2012 Fan, Yang, and Yu (2012) prove a conjecture of Amdeberhan on the generating function of a(n). - Jonathan Sondow, Dec 17 2012 Also the number of partitions of n into distinct parts p such that max(p) - min(p) <= length(p). - Clark Kimberling, Apr 18 2014 Also the maximum number of occurrences of any single value among the previous terms. - Ivan Neretin, Sep 20 2015 Where records occur gives A000217. - Omar E. Pol, Nov 05 2015 Also number of peaks in the largest Dyck path of the symmetric representation of sigma(n), n>=1. Cf. A237593. - Omar E. Pol, Dec 19 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Anna R. B. Fan, Harold R. L. Yang, Rebecca T. Yu, On the Maximum Number of k-Hooks of Partitions of n, arXiv:1212.3505 [math.CO], 2012. FORMULA a(n) = floor((sqrt(1+8*n)-1)/2). - Antti Karttunen a(n) = floor(-1/2+sqrt(2*n+b)) with 1/4<=b<9/4 or a(n) = floor((sqrt(8*n+b)-1)/2) with 1<=b<9. - Michael A. Childers (childers_moof(AT)yahoo.com), Nov 11 2001 a(n) = f(n,0) with f(n,k) = if n<=k then k else f(n-k-1,k+1). - Reinhard Zumkeller, May 23 2009 a(n) = k if k*(k+1)/2 <= n < (k+1)*(k+2)/2. - Jonathan Sondow, Dec 17 2012 G.f.: (1-x)^(-1)*Sum(n>=1, x^(n*(n+1)/2)) = (Theta_2(0,x^(1/2)) - 2*x^(1/8))/(2*x^(1/8)*(1-x)) where Theta_2 is a Jacobi Theta function. - Robert Israel, May 21 2015 T(n,k) = n, if T is a triangle and n>=k>=0. - Omar E. Pol, Dec 22 2016 a(n) = floor((A000196(1+8*n)-1)/2). - Pontus von Brömssen, Dec 10 2018 EXAMPLE G.f. = x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ... As triangle, the sequence starts 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, ... etc. MAPLE A003056 := (n, k) -> n: # Peter Luschny, Oct 29 2011 a := [ 0 ]: for i from 1 to 15 do for j from 1 to i+1 do a := [ op(a), i ]; od: od: a; A003056 := proc(n)     floor((sqrt(1+8*n)-1)/2) ; end proc: # R. J. Mathar, Jul 10 2015 MATHEMATICA f[n_] := Floor[(Sqrt[1 + 8n] - 1)/2]; Table[ f[n], {n, 0, 87}] (* Robert G. Wilson v, Oct 21 2005 *) Table[x, {x, 0, 13}, {y, 0, x}] // Flatten T[ n_, k_] := If[ n >= k >= 0, n, 0]; (* Michael Somos, Dec 22 2016 *) PROG (PARI) A003056(n)=(sqrtint(8*n+1)-1)\2  \\ M. F. Hasler, Oct 08 2011 (PARI) t1(n)=floor(-1/2+sqrt(2+2*n)) /* A003056 */ (PARI) t2(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2) /* A002262 */ (Haskell) a003056 = floor . (/ 2) . (subtract 1) .                   sqrt . (+ 1) . (* 8) . fromIntegral a003056_row n = replicate (n + 1) n a003056_tabl = map a003056_row [0..] a003056_list = concat \$ a003056_tabl -- Reinhard Zumkeller, Aug 02 2014, Oct 17 2010 (MAGMA) [Floor((Sqrt(1+8*n)-1)/2): n in [0..80]]; // Vincenzo Librandi, Oct 23 2011 CROSSREFS a(n) = A002024(n+1)-1. Cf. A000217, A004247 (multiplication table), A050600, A050602, A001462, A048645, A131507. Partial sums of A073424. Sequence in context: A225687 A083291 A169894 * A117707 A163352 A087834 Adjacent sequences:  A003053 A003054 A003055 * A003057 A003058 A003059 KEYWORD nonn,easy,nice,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:28 EDT 2019. Contains 328244 sequences. (Running on oeis4.)