login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003056 n appears n+1 times. Also table T(n,k) = n+k read by antidiagonals. 208
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also triangle read by rows: T(n,k), n>=0, k>=0, in which n appears n+1 times in row n. - Omar E. Pol, Jul 15 2012

The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= n-1) by rows from left to right: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002

Number of terms in partition of n with greatest number of distinct terms. - Amarnath Murthy, May 20 2001

Summation table for (x+y) = (0+0),(0+1),(1+0),(0+2),(1+1),(2+0), ...

Also the number of triangular numbers less than or equal to n, not counting 0 as triangular. - Robert G. Wilson v

Permutation of A116939: a(n) = A116939(A116941(n)), a(A116942(n)) = A116939(n). - Reinhard Zumkeller, Feb 27 2006

Maximal size of partitions of n into distinct parts, see A000009. - Reinhard Zumkeller, Jun 13 2009

Also number of digits of A000462(n). - Reinhard Zumkeller, Mar 27 2011

a(n) = 2*n + 1 - A001614(n+1) = n + 1 - A122797(n+1). - Reinhard Zumkeller, Feb 12 2012

Also the maximum number of 1's contained in the list of hook-lengths of a partition of n. E.g., a(4)=2 because hooks of partitions of n=4 comprise {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} where the number of 1's in each is 1,2,1,2,1. Hence the maximum is 2. - T. Amdeberhan, Jun 03 2012

Fan, Yang, and Yu (2012) prove a conjecture of Amdeberhan on the generating function of a(n). - Jonathan Sondow, Dec 17 2012

Also the number of partitions of n into distinct parts p such that max(p) - min(p) <= length(p). - Clark Kimberling, Apr 18 2014

Also the maximum number of occurrences of any single value among the previous terms. - Ivan Neretin, Sep 20 2015

Where records occur gives A000217. - Omar E. Pol, Nov 05 2015

Also number of peaks in the largest Dyck path of the symmetric representation of sigma(n), n>=1. Cf. A237593. - Omar E. Pol, Dec 19 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Anna R. B. Fan, Harold R. L. Yang, Rebecca T. Yu, On the Maximum Number of k-Hooks of Partitions of n, arXiv:1212.3505 [math.CO], 2012.

M. Somos, Sequences used for indexing triangular or square arrays

FORMULA

a(n) = floor((sqrt(1+8*n)-1)/2). - Antti Karttunen

a(n) = floor(-1/2+sqrt(2*n+b)) with 1/4<=b<9/4 or a(n) = floor((sqrt(8*n+b)-1)/2) with 1<=b<9. - Michael A. Childers (childers_moof(AT)yahoo.com), Nov 11 2001

a(n) = f(n,0) with f(n,k) = if n<=k then k else f(n-k-1,k+1). - Reinhard Zumkeller, May 23 2009

a(n) = k if k*(k+1)/2 <= n < (k+1)*(k+2)/2. - Jonathan Sondow, Dec 17 2012

G.f.: (1-x)^(-1)*Sum(n>=1, x^(n*(n+1)/2)) = (Theta_2(0,x^(1/2)) - 2*x^(1/8))/(2*x^(1/8)*(1-x)) where Theta_2 is a Jacobi Theta function. - Robert Israel, May 21 2015

T(n,k) = n, if T is a triangle and n>=k>=0. - Omar E. Pol, Dec 22 2016

EXAMPLE

G.f. = x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...

As triangle, the sequence starts

0,

1, 1,

2, 2, 2,

3, 3, 3, 3,

4, 4, 4, 4, 4,

5, 5, 5, 5, 5, 5,

6, 6, 6, 6, 6, 6, 6,

7, 7, 7, 7, 7, 7, 7, 7,

8, 8, 8, 8, ... etc.

MAPLE

A003056 := (n, k) -> n: # Peter Luschny, Oct 29 2011

a := [ 0 ]: for i from 1 to 15 do for j from 1 to i+1 do a := [ op(a), i ]; od: od: a;

A003056 := proc(n)

    floor((sqrt(1+8*n)-1)/2) ;

end proc: # R. J. Mathar, Jul 10 2015

MATHEMATICA

f[n_] := Floor[(Sqrt[1 + 8n] - 1)/2]; Table[ f[n], {n, 0, 87}] (* Robert G. Wilson v, Oct 21 2005 *)

Table[x, {x, 0, 13}, {y, 0, x}] // Flatten

T[ n_, k_] := If[ n >= k >= 0, n, 0]; (* Michael Somos, Dec 22 2016 *)

PROG

(PARI) A003056(n)=(sqrtint(8*n+1)-1)\2  \\ M. F. Hasler, Oct 08 2011

(PARI) t1(n)=floor(-1/2+sqrt(2+2*n)) /* A003056 */

(PARI) t2(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2) /* A002262 */

(Haskell)

a003056 = floor . (/ 2) . (subtract 1) .

                  sqrt . (+ 1) . (* 8) . fromIntegral

a003056_row n = replicate (n + 1) n

a003056_tabl = map a003056_row [0..]

a003056_list = concat $ a003056_tabl

-- Reinhard Zumkeller, Aug 02 2014, Oct 17 2010

(MAGMA) [Floor((Sqrt(1+8*n)-1)/2): n in [0..80]]; // Vincenzo Librandi, Oct 23 2011

CROSSREFS

a(n) = A002024(n+1)-1.

Cf. A000217, A004247 (multiplication table), A050600, A050602, A001462, A048645, A131507.

Partial sums of A073424.

Sequence in context: A225687 A083291 A169894 * A117707 A163352 A087834

Adjacent sequences:  A003053 A003054 A003055 * A003057 A003058 A003059

KEYWORD

nonn,easy,nice,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 04:20 EDT 2017. Contains 283902 sequences.