|
|
A112203
|
|
McKay-Thompson series of class 60e for the Monster group.
|
|
1
|
|
|
1, 1, 0, 1, -1, 0, 1, 0, 0, 2, -1, 0, 2, 1, 0, 2, 0, 0, 3, 0, 0, 4, -1, 0, 4, 1, 0, 6, -1, 0, 7, 2, 0, 8, -2, 0, 10, 2, 0, 12, -2, 0, 14, 2, 0, 16, -1, 0, 19, 2, 0, 22, -3, 0, 26, 2, 0, 30, -3, 0, 35, 5, 0, 41, -5, 0, 47, 4, 0, 54, -5, 0, 62, 6, 0, 70, -4, 0, 80, 4, 0, 92, -7, 0, 104, 7, 0, 118, -7, 0, 135
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,10
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
Index entries for McKay-Thompson series for Monster simple group
|
|
FORMULA
|
Expansion of A + q/A, where A = q^(1/2)*(eta(q^6)*eta(q^15)/( eta(q^3)* eta(q^30))), in powers of q. - G. C. Greubel, Jun 28 2018
|
|
EXAMPLE
|
T60e = 1/q +q +q^5 -q^7 +q^11 +2*q^17 -q^19 +2*q^23 +q^25 +...
|
|
MATHEMATICA
|
eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^6]*eta[q^15]/( eta[q^3]*eta[q^30])); a:= CoefficientList[Series[A + q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)
|
|
PROG
|
(PARI) q='q+O('q^50); A = (eta(q^6)*eta(q^15)/(eta(q^3)*eta(q^30))); Vec(A + q/A) \\ G. C. Greubel, Jun 28 2018
|
|
CROSSREFS
|
Sequence in context: A095734 A137269 A112201 * A196279 A132798 A080425
Adjacent sequences: A112200 A112201 A112202 * A112204 A112205 A112206
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Michael Somos, Aug 28 2005
|
|
STATUS
|
approved
|
|
|
|