login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112203 McKay-Thompson series of class 60e for the Monster group. 1
1, 1, 0, 1, -1, 0, 1, 0, 0, 2, -1, 0, 2, 1, 0, 2, 0, 0, 3, 0, 0, 4, -1, 0, 4, 1, 0, 6, -1, 0, 7, 2, 0, 8, -2, 0, 10, 2, 0, 12, -2, 0, 14, 2, 0, 16, -1, 0, 19, 2, 0, 22, -3, 0, 26, 2, 0, 30, -3, 0, 35, 5, 0, 41, -5, 0, 47, 4, 0, 54, -5, 0, 62, 6, 0, 70, -4, 0, 80, 4, 0, 92, -7, 0, 104, 7, 0, 118, -7, 0, 135 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of A + q/A, where A = q^(1/2)*(eta(q^6)*eta(q^15)/( eta(q^3)* eta(q^30))), in powers of q. - G. C. Greubel, Jun 28 2018

EXAMPLE

T60e = 1/q +q +q^5 -q^7 +q^11 +2*q^17 -q^19 +2*q^23 +q^25 +...

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^6]*eta[q^15]/( eta[q^3]*eta[q^30]));  a:= CoefficientList[Series[A + q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)

PROG

(PARI) q='q+O('q^50); A = (eta(q^6)*eta(q^15)/(eta(q^3)*eta(q^30))); Vec(A + q/A) \\ G. C. Greubel, Jun 28 2018

CROSSREFS

Sequence in context: A095734 A137269 A112201 * A196279 A132798 A080425

Adjacent sequences:  A112200 A112201 A112202 * A112204 A112205 A112206

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:01 EST 2019. Contains 319309 sequences. (Running on oeis4.)