This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112206 McKay-Thompson series of class 72b for the Monster group. 5
 1, 1, 0, 2, 2, 1, 2, 2, 3, 4, 4, 4, 7, 7, 6, 10, 11, 11, 14, 16, 17, 21, 22, 24, 32, 34, 34, 44, 49, 50, 60, 66, 72, 84, 90, 98, 117, 125, 132, 156, 171, 181, 206, 226, 245, 277, 298, 322, 369, 397, 422, 480, 522, 557, 620, 674, 728, 807, 868, 936, 1043, 1121, 1198 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). FORMULA a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(5/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015 Expansion of  q^(1/6)*((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))) in powers of q. - G. C. Greubel, Jun 01 2018 EXAMPLE T72b = 1/q +q^5 +2*q^17 +2*q^23 +q^29 +2*q^35 +2*q^41 +3*q^47 +... MATHEMATICA nmax = 60; CoefficientList[Series[Product[(1 + x^k)*(1 + x^(3*k)) / ((1 + x^(2*k))*(1 + x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *) eta[q_]:= q^(1/24)*QPochhammer[q]; h:= q^(1/6)*((eta[q^2]*eta[q^6])^2/(eta[q]*eta[q^3]*eta[q^4]*eta[q^12])); a:= CoefficientList[Series [h, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 01 2018 *) PROG (PARI) q='q+O('q^50); h=((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))); Vec(h) \\ G. C. Greubel, Jun 01 2018 CROSSREFS Cf. A112175. Sequence in context: A097266 A226983 A112175 * A038541 A070215 A071457 Adjacent sequences:  A112203 A112204 A112205 * A112207 A112208 A112209 KEYWORD nonn AUTHOR Michael Somos, Aug 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 19:49 EST 2019. Contains 319309 sequences. (Running on oeis4.)