login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002727 Number of 3 X n binary matrices up to row and column permutations.
(Formerly M3460 N1407)
22
1, 4, 13, 36, 87, 190, 386, 734, 1324, 2284, 3790, 6080, 9473, 14378, 21323, 30974, 44159, 61898, 85440, 116286, 156240, 207446, 272432, 354162, 456097, 582238, 737205, 926298, 1155567, 1431892, 1763074, 2157904, 2626276, 3179278, 3829294, 4590118, 5477081 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.

Vladeta Jovovic, Binary matrices up to row and column permutations

A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy]

B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218.

Index entries for sequences related to binary matrices

Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1).

FORMULA

G.f.: (x^6+x^4+2*x^3+x^2+1)/((1-x)^4*(1-x^2)^2*(1-x^3)^2). - Vladeta Jovovic, Feb 04 2000

a(0)=1, a(1)=4, a(2)=13, a(3)=36, a(4)=87, a(5)=190, a(6)=386, a(7)=734, a(8)=1324, a(9)=2284, a(10)=3790, a(11)=6080, a(12)=9473, a(13)=14378. For n>13, a(n)=4*a(n-1)-4*a(n-2)-2*a(n-3)+2*a(n-4)+4*a(n-5)+3*a(n-6)- 12*a(n-7)+ 3*a(n-8)+4*a(n-9)+2*a(n-10)-2*a(n-11)-4*a(n-12)+4*a(n-13)-a(n-14). - Harvey P. Dale, Nov 10 2011

a(n) = -a(-8 - n) for all n in Z. - Michael Somos, Aug 22 2016

EXAMPLE

G.f. = 1 + 4*x + 13*x^2 + 36*x^3 + 87*x^4 + 190*x^5 + 386*x^6 + 734*x^7 + ...

MATHEMATICA

CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x)^4(1-x^2)^2(1-x^3)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1}, {1, 4, 13, 36, 87, 190, 386, 734, 1324, 2284, 3790, 6080, 9473, 14378}, 41] (* Harvey P. Dale, Nov 10 2011 *)

PROG

(MAGMA) I:=[1, 4, 13, 36, 87, 190, 386, 734, 1324, 2284, 3790, 6080, 9473, 14378]; [n le 14 select I[n] else 4*Self(n-1)-4*Self(n-2)-2*Self(n-3)+2*Self(n-4)+4*Self(n-5)+3*Self(n-6)-12*Self(n-7)+ 3*Self(n-8)+4*Self(n-9)+2*Self(n-10)-2*Self(n-11)-4*Self(n-12)+4*Self(n-13)-Self(n-14): n in [1..50]]; // Vincenzo Librandi, Oct 13 2015

(PARI) {a(n) = (6*n^7 + 168*n^6 + 2121*n^5 + 15540*n^4 + 70084*n^3 + 190512*n^2 + n*[284544, 281709, 277824, 281709, 284544, 274989][n%6+1]) \ 181440 + 1}; /* Michael Somos, Aug 22 2016 */

CROSSREFS

Cf. A000601, A002623, A006148, A006381.

A row of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Sequence in context: A270988 A272556 A173723 * A036629 A079922 A053563

Adjacent sequences:  A002724 A002725 A002726 * A002728 A002729 A002730

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, Feb 04 2000

Definition corrected by Max Alekseyev, Feb 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 01:23 EDT 2017. Contains 283901 sequences.