login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206498 Number of quasipendant vertices in the rooted tree with Matula-Goebel number n. 1
0, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 1, 4, 2, 2, 2, 3, 2, 3, 3, 2, 3, 1, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 4, 2, 2, 4, 3, 3, 3, 2, 3, 3, 2, 2, 4, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 2, 2, 4, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A pendant vertex in a tree is a vertex having degree 1. A vertex is called quasipendant if it is adjacent to a pendant vertex (see the Bapat reference, p. 106).

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

REFERENCES

R. B. Bapat, Graphs and Matrices, Springer, London, 2010.

F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288.

Index entries for sequences related to Matula-Goebel numbers

FORMULA

a(1)=0; a(2)=2; if n=p(t) (=the t-th prime) and t is even then a(n)=Lp(t); if n=p(t) (=the t-th prime) and t>=3 is odd, then a(n) = 1+Lp(t); if n is composite, then a(n)=Lp(n); here Lp stands for "number of leaf parents" (see A196062).

EXAMPLE

a(5)=2 because the rooted tree with Matula-Goebel number 5 is the path tree A - B - C - D; the pendant vertices are A and D while the quasipendant ones are B and C.

MAPLE

with(numtheory): Lp := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then Lp(pi(n)) elif `mod`(r(n), 2) = 0 and `mod`(s(n), 2) = 0 then Lp(r(n))+Lp(s(n))-1 else Lp(r(n))+Lp(s(n)) end if end proc: a := proc (n) if n = 1 then 0 elif n = 2 then 2 elif bigomega(n) = 1 and 0 < `mod`(pi(n), 2) then 1+Lp(pi(n)) elif bigomega(n) = 1 then Lp(pi(n)) else Lp(n) end if end proc: seq(a(n), n = 1 .. 120);

PROG

(Haskell)

a206498 1 = 0

a206498 2 = 2

a206498 x = if t > 0 then a196062 t + t `mod` 2 else a196062 x

            where t = a049084 x

-- Reinhard Zumkeller, Sep 03 2013

CROSSREFS

Cf. A196062.

Cf. A049084.

Sequence in context: A143209 A163994 A156593 * A184848 A184720 A054526

Adjacent sequences:  A206495 A206496 A206497 * A206499 A206500 A206501

KEYWORD

nonn

AUTHOR

Emeric Deutsch, May 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 11:56 EST 2019. Contains 319363 sequences. (Running on oeis4.)