login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058564 McKay-Thompson series of class 21B for Monster. 2
1, 0, -1, -1, 1, 2, -1, 3, -1, -1, -2, 0, 1, -2, 4, -1, -3, -4, 3, 3, -2, 10, -2, -6, -7, 3, 8, -6, 16, -4, -10, -12, 4, 9, -9, 24, -6, -14, -17, 8, 14, -12, 41, -9, -26, -30, 15, 30, -21, 64, -16, -35, -45, 16, 35, -33, 90, -21, -55, -66, 32, 54, -44, 140 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,6

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..10000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of 1 + eta(q)*eta(q^3)/(eta(q^7)*eta(q^21)) in powers of q. - G. C. Greubel, Jun 14 2018

EXAMPLE

T21B = 1/q - q - q^2 + q^3 + 2*q^4 - q^5 + 3*q^6 - q^7 - q^8 - 2*q^9 + q^11 - ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(1 + (eta[q]*eta[q^3]/(eta[q^7]*eta[q^21]))), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 70}] (* G. C. Greubel, Jun 14 2018 *)

PROG

(PARI) q='q+O('q^70); A = 1 + eta(q)*eta(q^3)/(eta(q^7)*eta(q^21))/q; Vec(A) \\ G. C. Greubel, Jun 14 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A226006 (same sequence except for n=0).

Sequence in context: A144869 A247564 A193870 * A226006 A210943 A260869

Adjacent sequences:  A058561 A058562 A058563 * A058565 A058566 A058567

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

More terms from Michel Marcus, Feb 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 03:51 EST 2019. Contains 319184 sequences. (Running on oeis4.)