This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152954 McKay-Thompson series of class 9d for the Monster group with a(0) = -2. 1
 1, -2, -3, 2, 0, 6, 5, 0, 3, 6, 0, -18, 12, 0, 21, 16, 0, 6, 27, 0, -60, 34, 0, 72, 51, 0, 24, 70, 0, -168, 101, 0, 183, 134, 0, 54, 182, 0, -411, 240, 0, 450, 322, 0, 138, 416, 0, -936, 544, 0, 981, 696, 0, 282, 902, 0, -1989, 1144, 0, 2070, 1462, 0, 597, 1832, 0, -4026, 2317, 0, 4098 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,2 LINKS FORMULA Expansion of F(q) - 2 - 3 / F(q) in powers of q where F(q) = (eta(q^9)^2 / (eta(q^3) * eta(q^27)))^2. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - u^2) * (u - v^2) + 4 * (1 + u + v) * (u + v + u*v). G.f. is a period 1 Fourier series which satisfies f(-1 / (81 t)) = f(t) where q = exp(2 pi i t). a(3*n) = 0 unless n = 0. EXAMPLE 1/q - 2 - 3*q + 2*q^2 + 6*q^4 + 5*q^5 + 3*q^7 + 6*q^8 - 18*q^10 + 12*q^11 + ... MATHEMATICA QP = QPochhammer; F = (QP[q^9]^2/(QP[q^3]*QP[q^27]))^2; s = F - 2*q - 3*(q^2/F) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *) PROG (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^9 + A)^2 / eta(x^3 + A) / eta(x^27 + A))^2; polcoeff( A - 2 * x - 3 * x^2 / A, n))} CROSSREFS A058096(n) = a(n) unless n = 0. a(3*n - 1) = A058601(n). Sequence in context: A076427 A011024 A105855 * A079175 A202815 A049336 Adjacent sequences:  A152951 A152952 A152953 * A152955 A152956 A152957 KEYWORD sign AUTHOR Michael Somos, Dec 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .