login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152954 McKay-Thompson series of class 9d for the Monster group with a(0) = -2. 1
1, -2, -3, 2, 0, 6, 5, 0, 3, 6, 0, -18, 12, 0, 21, 16, 0, 6, 27, 0, -60, 34, 0, 72, 51, 0, 24, 70, 0, -168, 101, 0, 183, 134, 0, 54, 182, 0, -411, 240, 0, 450, 322, 0, 138, 416, 0, -936, 544, 0, 981, 696, 0, 282, 902, 0, -1989, 1144, 0, 2070, 1462, 0, 597, 1832, 0, -4026, 2317, 0, 4098 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

LINKS

Table of n, a(n) for n=-1..67.

FORMULA

Expansion of F(q) - 2 - 3 / F(q) in powers of q where F(q) = (eta(q^9)^2 / (eta(q^3) * eta(q^27)))^2.

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - u^2) * (u - v^2) + 4 * (1 + u + v) * (u + v + u*v).

G.f. is a period 1 Fourier series which satisfies f(-1 / (81 t)) = f(t) where q = exp(2 pi i t).

a(3*n) = 0 unless n = 0.

EXAMPLE

1/q - 2 - 3*q + 2*q^2 + 6*q^4 + 5*q^5 + 3*q^7 + 6*q^8 - 18*q^10 + 12*q^11 + ...

MATHEMATICA

QP = QPochhammer; F = (QP[q^9]^2/(QP[q^3]*QP[q^27]))^2; s = F - 2*q - 3*(q^2/F) + O[q]^70; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 16 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^9 + A)^2 / eta(x^3 + A) / eta(x^27 + A))^2; polcoeff( A - 2 * x - 3 * x^2 / A, n))}

CROSSREFS

A058096(n) = a(n) unless n = 0. a(3*n - 1) = A058601(n).

Sequence in context: A076427 A011024 A105855 * A079175 A202815 A049336

Adjacent sequences:  A152951 A152952 A152953 * A152955 A152956 A152957

KEYWORD

sign

AUTHOR

Michael Somos, Dec 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.