login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007248 McKay-Thompson series of class 4C for the Monster group.
(Formerly M5084)
6
1, 20, -62, 216, -641, 1636, -3778, 8248, -17277, 34664, -66878, 125312, -229252, 409676, -716420, 1230328, -2079227, 3460416, -5677816, 9198424, -14729608, 23328520, -36567242, 56774712, -87369461, 133321908, -201825396, 303248408, -452431503 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, ``More on replicable functions,'' Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.

McKay, John; Strauss, Hubertus. The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..28.

Index entries for McKay-Thompson series for Monster simple group

FORMULA

G.f.: 16*(theta_3/theta_2)^4 - 8 = 16 / lambda(z) - 8.

Expansion of q * ( -8 + 16 / lambda(z)) in powers of q^2 where nome q = exp(Pi i z). - Michael Somos, Nov 14 2006

Expansion of 4 * q^(1/2) * (k(q) + 1 / k(q)) in powers of q where nome q = exp(Pi i Z). - Michael Somos, Nov 11 2014

Expansion of q * (8 + (eta(q) / eta(q^4))^8) in powers of q^2. - Michael Somos, Nov 14 2006

Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v + 24)^2 - (v + 8) * u^2. - Michael Somos, Nov 14 2006

G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A097243. - Michael Somos, Jul 22 2011

a(n) = A029845(2*n - 1) = A124972(2*n - 1). - Michael Somos, Nov 14 2006.

EXAMPLE

G.f. = 1 + 20*x - 62*x^2 + 216*x^3 - 641*x^4 + 1636*x^5 - 3778*x^6 + ...

T4C = 1/q + 20*q - 62*q^3 + 216*q^5 - 641*q^7 + 1636*q^9 - 3778*q^11 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 8 q + (QPochhammer[ q] / QPochhammer[ q^4])^8, {q, 0, 2 n}]; (* Michael Somos, Jul 22 2011 *)

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ -8 + 16 / m, {q, 0, 2 n - 1}]]; (* Michael Somos, Jul 22 2011 *)

a[ n_] := SeriesCoefficient[ -8 + 16 (EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q])^4, {q, 0, 2 n - 1}]; (* Michael Somos, Jul 22 2011 *)

PROG

(PARI) 8*x + prod(n=1, 39, if( n%4, 1 - x^n, 1), 1 + O(x^40))^8

(PARI) {a(n) = local(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( 8*x + (eta(x + A) / eta(x^4 + A))^8, n))}; /* Michael Somos, Nov 14 2006 */

CROSSREFS

Cf. A029845, A097243, A124972.

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Sequence in context: A276962 A105092 A112144 * A117431 A159504 A117432

Adjacent sequences:  A007245 A007246 A007247 * A007249 A007250 A007251

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:48 EST 2016. Contains 278874 sequences.