login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112162
McKay-Thompson series of class 24b for the Monster group.
1
1, 1, 7, 9, 10, 23, 38, 47, 75, 112, 148, 217, 293, 385, 553, 728, 928, 1272, 1670, 2111, 2765, 3566, 4504, 5784, 7300, 9123, 11592, 14458, 17838, 22342, 27668, 33884, 41843, 51344, 62548, 76515, 92989, 112514, 136687, 164961, 198190
OFFSET
0,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A - q/A, where A = q^(1/2)*(eta(q^3)*eta(q^4)/(eta(q)* eta(q^12)))^2, in powers of q. - G. C. Greubel, Jun 25 2018
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 27 2018
EXAMPLE
T24b = 1/q + q + 7*q^3 + 9*q^5 + 10*q^7 + 23*q^9 + 38*q^11 + 47*q^13 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^3]*eta[q^4]/(eta[q]*eta[q^12]))^2; a := CoefficientList[Series[A - q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 25 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^3)*eta(q^4)/(eta(q)*eta(q^12)))^2; Vec(A - q/A) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Sequence in context: A095034 A118621 A117933 * A058483 A176326 A283056
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved