login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029841 McKay-Thompson series of class 8E for the Monster group. 7
1, 4, 2, -8, -1, 20, -2, -40, 3, 72, 2, -128, -4, 220, -4, -360, 5, 576, 8, -904, -8, 1384, -10, -2088, 11, 3108, 12, -4552, -15, 6592, -18, -9448, 22, 13392, 26, -18816, -29, 26216, -34, -36224, 38, 49700, 42, -67728, -51, 91688 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Hauptmodul for Gamma'_0(8).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 380, Section 488.

J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.

J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

Index entries for McKay-Thompson series for Monster simple group

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

G.f.: ( Product_{k>0} (1 + q^(2*k - 1)) / (1 + q^(2*k)) )^4.

Expansion of q^(1/4) * (1 + k) / k^(1/2) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus. - Michael Somos, Aug 01 2011

Expansion of q^(1/2) * 4 / k in powers of q where q is Jacobi's nome and k is the elliptic modulus. - Michael Somos, Aug 01 2011 and Feb 28 2012

Expansion of (phi(x) / psi(x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.

Expansion of q^(1/2) * (eta(q^2)^3 / (eta(q) * eta(q^4)^2))^4 in powers of q. - Michael Somos, Aug 01 2011

Euler transform of period 4 sequence [4, -8, 4, 0, ...]. - Michael Somos, Mar 18 2004

Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 16 + 8*v + v^2 - u^2*v. - Michael Somos, Mar 18 2004

G.f. A(q) satisfies A(q) = sqrt(A(q^2))+4*q/sqrt(A(q^2)). - Joerg Arndt, Aug 06 2011

A112143(n) = (-1)^n * a(n). a(2*n) = A029839(n). a(2*n + 1) = 4 * A079006(n). - Michael Somos, Mar 27 2004.

Convolution inverse of A001938. Convolution square of A029839. Convolution square is A029845.

EXAMPLE

G.f. = 1 + 4*x + 2*x^2 - 8*x^3 - x^4 + 20*x^5 - 2*x^6 - 40*x^7 + 3*x^8 + ...

T8E = 1/q + 4*q + 2*q^3 - 8*q^5 - q^7 + 20*q^9 - 2*q^11 - 40*q^13 + 3*x^15 + ...

MATHEMATICA

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 4 / Sqrt[m], {q, 0, n - 1/2}]]; (* Michael Somos, Aug 01 2011 *)

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 2 (1 + Sqrt[m]) / m^(1/4), {q, 0, n/2 - 1/4}]]; (* Michael Somos, Aug 01 2011 *)

a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^3 / (QPochhammer[ x] QPochhammer[x^4]^2))^4, {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A))^2)^4, n))};

(PARI) {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = (4*x + A) / sqrt(A)); polcoeff(A, n))};

CROSSREFS

Cf. A001938, A029839, A029845, A079006, A112143.

Sequence in context: A241298 A019953 A241005 * A112143 A112151 A112152

Adjacent sequences:  A029838 A029839 A029840 * A029842 A029843 A029844

KEYWORD

sign,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 23:13 EST 2016. Contains 279021 sequences.