login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008300
Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) gives number of {0,1} n X n matrices with all row and column sums equal to k.
28
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 90, 24, 1, 1, 120, 2040, 2040, 120, 1, 1, 720, 67950, 297200, 67950, 720, 1, 1, 5040, 3110940, 68938800, 68938800, 3110940, 5040, 1, 1, 40320, 187530840, 24046189440, 116963796250, 24046189440, 187530840, 40320, 1, 1, 362880, 14398171200, 12025780892160, 315031400802720, 315031400802720, 12025780892160, 14398171200, 362880, 1
OFFSET
0,5
COMMENTS
Or, triangle of multipermutation numbers T(n,k), n >= 0, 0 <= k <= n: number of relations on an n-set such that all vertical sections and all horizontal sections have k elements.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 236, P(n,k).
LINKS
Brendan D. McKay, Rows n = 0..30, flattened
C. J. Everett and P. R. Stein, The asymptotic number of integer stochastic matrices, Disc. Math. 1 (1971), 55-72.
Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
B. D. McKay, Applications of a technique for labeled enumeration, Congress. Numerantium, 40 (1983), 207-221.
FORMULA
Comtet quotes Everett and Stein as showing that T(n,k) ~ (kn)!(k!)^(-2n) exp( -(k-1)^2/2 ) for fixed k as n -> oo.
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 24, 90, 24, 1;
1, 120, 2040, 2040, 120, 1;
1, 720, 67950, 297200, 67950, 720, 1;
1, 5040, 3110940, 68938800, 68938800, 3110940, 5040, 1;
...
PROG
(PARI)
T(n, k)={
local(M=Map(Mat([n, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(i, p, v, e) = if(i<0, if(!e, acc(p, v)), my(t=polcoef(p, i)); for(j=0, min(t, e), self()(i-1, p+j*(x-1)*x^i, binomial(t, j)*v, e-j))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k-1, src[i, 1], src[i, 2], k))); vecsum(Mat(M)[, 2]);
} \\ Andrew Howroyd, Apr 03 2020
CROSSREFS
Row sums give A067209.
Central coefficients are A058527.
Cf. A000142 (column 1), A001499 (column 2), A001501 (column 3), A058528 (column 4), A075754 (column 5), A172544 (column 6), A172541 (column 7), A172536 (column 8), A172540 (column 9), A172535 (column 11), A172534 (column 12), A172538 (column 13), A172537 (column 14).
Cf. A133687, A333157 (symmetric matrices), A257493 (nonnegative elements), A260340 (up to row permutations), A364068 (traceless).
Sequence in context: A376935 A155795 A009963 * A321789 A173887 A288025
KEYWORD
tabl,nonn,nice
EXTENSIONS
More terms from Greg Kuperberg, Feb 08 2001
STATUS
approved