OFFSET
0,5
COMMENTS
Or, triangle of multipermutation numbers T(n,k), n >= 0, 0 <= k <= n: number of relations on an n-set such that all vertical sections and all horizontal sections have k elements.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 236, P(n,k).
LINKS
Brendan D. McKay, Rows n = 0..30, flattened
C. J. Everett and P. R. Stein, The asymptotic number of integer stochastic matrices, Disc. Math. 1 (1971), 55-72.
Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
Richard J. Mathar, Rencontres for equipartite distributions of multisets of colored balls into urns, vixra:2306.0157 (2023)
B. D. McKay, Applications of a technique for labeled enumeration, Congress. Numerantium, 40 (1983), 207-221.
Brendan D. McKay, first 30 rows : entries named Bv[n,k,n,k]
Wouter Meeussen, relevant entries from B. D. McKay reference
FORMULA
Comtet quotes Everett and Stein as showing that T(n,k) ~ (kn)!(k!)^(-2n) exp( -(k-1)^2/2 ) for fixed k as n -> oo.
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 24, 90, 24, 1;
1, 120, 2040, 2040, 120, 1;
1, 720, 67950, 297200, 67950, 720, 1;
1, 5040, 3110940, 68938800, 68938800, 3110940, 5040, 1;
...
PROG
(PARI)
T(n, k)={
local(M=Map(Mat([n, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(i, p, v, e) = if(i<0, if(!e, acc(p, v)), my(t=polcoef(p, i)); for(j=0, min(t, e), self()(i-1, p+j*(x-1)*x^i, binomial(t, j)*v, e-j))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k-1, src[i, 1], src[i, 2], k))); vecsum(Mat(M)[, 2]);
} \\ Andrew Howroyd, Apr 03 2020
CROSSREFS
Row sums give A067209.
Central coefficients are A058527.
Cf. A000142 (column 1), A001499 (column 2), A001501 (column 3), A058528 (column 4), A075754 (column 5), A172544 (column 6), A172541 (column 7), A172536 (column 8), A172540 (column 9), A172535 (column 11), A172534 (column 12), A172538 (column 13), A172537 (column 14).
KEYWORD
AUTHOR
EXTENSIONS
More terms from Greg Kuperberg, Feb 08 2001
STATUS
approved