login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058205
McKay-Thompson series of class 11A for the Monster Group.
4
1, 0, 17, 46, 116, 252, 533, 1034, 1961, 3540, 6253, 10654, 17897, 29284, 47265, 74868, 117158, 180608, 275562, 415300, 620210, 916860, 1344251, 1953974, 2819664, 4038300, 5746031, 8122072, 11413112, 15943576, 22153909, 30620666
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of -6 + (1 + 3*F)^2* (1/F + 1 + 3*F) where F = eta(q^3)* eta(q^33)/ (eta(q)* eta(q^11)) in powers of q.
G.f. is Fourier series of a level 11 modular function. f(-1 / (11t)) = f(t) where q = exp(2 Pi i t).
a(n) ~ exp(4*Pi*sqrt(n/11)) / (sqrt(2)*11^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
T11A = 1/q + 17*q + 46*q^2 + 116*q^3 + 252*q^4 + 533*q^5 + 1034*q^6 + ...
MATHEMATICA
QP = QPochhammer; F = q*QP[q^3]*(QP[q^33]/(QP[q]*QP[q^11])); s = q*(-6 + (1 + 3*F)^2*(1/F + 1 + 3*F)) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015 *)
PROG
(PARI) q='q+O('q^30); {F = q*(eta(q^3)*eta(q^33)/(eta(q)*eta(q^11)))}; Vec(-6 + (1+3*F)^2*(3*F + 1 +1/F)) \\ G. C. Greubel, May 28 2018
CROSSREFS
Apart from initial terms, same as A003295.
Sequence in context: A120099 A307293 A045570 * A329951 A034783 A275770
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved