login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112144 McKay-Thompson series of class 8a for the Monster group. 1
1, -20, -62, -216, -641, -1636, -3778, -8248, -17277, -34664, -66878, -125312, -229252, -409676, -716420, -1230328, -2079227, -3460416, -5677816, -9198424, -14729608, -23328520, -36567242, -56774712, -87369461, -133321908, -201825396, -303248408 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The convolution square of this sequence is A107080, except for the constant term. - G. A. Edgar, Mar 22 2017

LINKS

G. A. Edgar, Table of n, a(n) for n = 0..999

D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of q^(1/2) * (eta(q)^4 / eta(q^4)^4 - 4^2*eta(q^4)^4 / eta(q)^4) in powers of q. - G. A. Edgar, Mar 22 2017

EXAMPLE

T8a = 1/q -20*q -62*q^3 -216*q^5 -641*q^7 -1636*q^9 -3778*q^11 +...

PROG

(PARI) q='q+O('q^66); Vec((eta(q)^4 / eta(q^4)^4 - q*4^2*eta(q^4)^4 / eta(q)^4)) \\ Joerg Arndt, Mar 23 2017

CROSSREFS

Sequence in context: A041784 A276962 A105092 * A007248 A117431 A159504

Adjacent sequences:  A112141 A112142 A112143 * A112145 A112146 A112147

KEYWORD

sign

AUTHOR

Michael Somos, Aug 28 2005

EXTENSIONS

More terms from G. A. Edgar, Mar 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 23 13:28 EDT 2017. Contains 288665 sequences.