This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096938 McKay-Thompson series of class 60F for the Monster group. 13
 1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 8, 10, 12, 14, 16, 19, 22, 26, 30, 35, 41, 47, 54, 62, 70, 80, 92, 104, 118, 135, 152, 171, 194, 218, 244, 275, 308, 344, 386, 432, 481, 537, 598, 664, 738, 819, 908, 1006, 1114, 1232, 1362, 1503, 1658, 1828, 2012, 2214, 2436, 2676 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The inverted graded parafermionic partition function. Also number of partitions of n into parts congruent to {1,3,7,9} mod 10. Also number of partitions of n into odd parts parts in which no part appears more than 4 times. Number of partitions of n into distinct parts in which no part is a multiple of 5. This generating function is a generalization of the sequences A003105 and A006950. It arose in my recent work on partial supersymmetry in writing the graded parafermionic partition function in which I obtained a more general formula. REFERENCES T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004. Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12. Donald Spector, Duality, partial supersymmetry and arithmetic number theory, arXiv:hep-th/9710002, 1997. Donald Spector, Duality, partial supersymmetry and arithmetic number theory, J. Math. Phys. Vol. 39, 1998, p. 1919. FORMULA Euler transform of period 10 sequence [1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ...]. - Vladeta Jovovic, Aug 19 2004 Expansion of q^(1/6)eta(q^2)eta(q^5)/(eta(q)eta(q^10)) in powers of q. Given g.f. A(x), then B(x)=(A(x^6)/x)^2 satisfies 0=f(B(x), B(x^2)) where f(u, v)=(u^3+v^3)(1+uv)-uv(1-uv)^2. - Michael Somos, Jan 18 2005 G.f.: 1/product_{k>=1} (1-x^k+x^(2*k)-x^(3*k)+x^(4*k)) = 1/Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial. a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(6*sqrt(15))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017 EXAMPLE a(8)=4, the number of partitions into distinct parts that exclude the number 5 because we can write 8=7+1=6+2=4+3+1. T60F = 1/q + q^5 + q^11 + 2*q^17 + 2*q^23 + 2*q^29 + 3*q^35 + 4*q^41 +... MAPLE series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)), k+1..150), x=0, 100); MATHEMATICA CoefficientList[ Series[ Product[1/(1 - x^k + x^(2k) - x^(3k) + x^(4k)), {k, 70}], {x, 0, 60}], x] (* Robert G. Wilson v, Aug 19 2004 *) nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *) QP = QPochhammer; s = QP[q^2]*(QP[q^5]/(QP[q]*QP[q^10])) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *) PROG (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)*eta(x^5+A)/eta(x+A)/eta(x^10+A), n))} /* Michael Somos, Jan 18 2005 */ CROSSREFS Cf. A133563. Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A261770 (m=6), A097793 (m=7), A261771 (m=8), A112193 (m=9), A261772 (m=10). Sequence in context: A029050 A066920 A035381 * A130084 A017981 A274759 Adjacent sequences:  A096935 A096936 A096937 * A096939 A096940 A096941 KEYWORD nonn AUTHOR Noureddine Chair, Aug 18 2004 EXTENSIONS Definition corrected by Vladeta Jovovic, Aug 19 2004 More terms from Robert G. Wilson v, Aug 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 06:55 EST 2019. Contains 319207 sequences. (Running on oeis4.)