login
A029050
Expansion of 1/((1-x)(1-x^3)(1-x^7)(1-x^9)).
0
1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 7, 9, 10, 11, 13, 15, 16, 19, 21, 22, 26, 28, 30, 34, 37, 39, 44, 48, 50, 56, 60, 63, 69, 74, 78, 85, 91, 95, 103, 109, 114, 123, 130, 136, 146, 154, 160, 171, 180, 187, 199, 209, 217, 230
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 7 and 9. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,0,1,-1,1,-2,1,-1,1,0,0,-1,1,0,1,-1).
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^7)(1-x^9)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1}, {1, 1, 1, 2, 2, 2, 3, 4, 4, 6, 7, 7, 9, 10, 11, 13, 15, 16, 19, 21}, 80] (* Harvey P. Dale, Dec 16 2018 *)
PROG
(PARI) a(n)=floor((n+19)*(n^2+11*n+56)/1134+((n\3+1)*[1, 1, -2]/27+[11, 4, -18]/81)[n%3+1]) \\ Tani Akinari, May 20 2014
CROSSREFS
Sequence in context: A071988 A301337 A302404 * A066920 A035381 A096938
KEYWORD
nonn
AUTHOR
STATUS
approved