login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097793
McKay-Thompson series of class 56B for the Monster group.
9
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 10, 12, 14, 17, 21, 24, 28, 34, 39, 46, 53, 61, 71, 82, 94, 108, 124, 142, 162, 185, 210, 238, 271, 306, 345, 390, 439, 494, 556, 623, 698, 783, 875, 977, 1092, 1216, 1354, 1508, 1674, 1859, 2064, 2286, 2532, 2803, 3098, 3424
OFFSET
0,4
COMMENTS
Number of partitions of n into distinct parts not divisible by 7.
Also McKay-Thompson series of class 56C for Monster. - Michel Marcus, Feb 19 2014
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
FORMULA
Euler transform of period 14 sequence [ 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, ...].
Expansion of q^(1/4) * eta(q^2) * eta(q^7) / (eta(q) * eta(q^14)) in powers of q.
G.f.: Product_{k>0} (1 + x^k) / (1 + x^(7*k)).
a(n) ~ exp(Pi*sqrt(2*n/7)) / (2 * 14^(1/4) * n^(3/4)) * (1 - (3*sqrt(7)/ (8*Pi*sqrt(2)) + Pi/(4*sqrt(14))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
EXAMPLE
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 +...
T56B = 1/q + q^3 + q^7 + 2q^11 + 2q^15 + 3q^19 + 4q^23 + 4q^27 +...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(7*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
QP = QPochhammer; s = QP[q^2]*(QP[q^7]/(QP[q]*QP[q^14])) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod( k=1, n, 1 + x^k, 1 + A) / prod( k=1, n\7, 1 + x^(7*k), 1 + A), n))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^7 + A) / (eta(x + A) * eta(x^14 + A)), n))}
CROSSREFS
Cf. A113297.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A261771 (m=8), A112193 (m=9), A261772 (m=10).
Sequence in context: A112582 A104648 A141271 * A015742 A015754 A207613
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 24 2004
STATUS
approved