This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097792 Numbers of the form 4k^4 or (kp)^p for prime p > 2 and k = 1, 2, 3, .... 7
 4, 27, 64, 216, 324, 729, 1024, 1728, 2500, 3125, 3375, 5184, 5832, 9261, 9604, 13824, 16384, 19683, 26244, 27000, 35937, 40000, 46656, 58564, 59319, 74088, 82944, 91125, 100000, 110592, 114244, 132651, 153664, 157464, 185193, 202500, 216000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A result of Vahlen shows that the polynomial x^n + n is reducible over the integers for n in this sequence and no other n. LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 A. Schinzel, Problems and results on polynomials, Algorithms Seminar, INRIA, 1992-1993. K. T. Vahlen, Über reductible Binome, Acta Mathematica 19:1 (December 1895), pp. 195-198. FORMULA Is a(n) ~ c * n^3? - David A. Corneth, Jan 12 2019 MATHEMATICA nMax=500000; lst={}; k=1; While[4k^4<=nMax, AppendTo[lst, 4k^4]; k++ ]; n=2; While[p=Prime[n]; p^p<=nMax, k=1; While[(k*p)^p<=nMax, AppendTo[lst, (k*p)^p]; k++ ]; n++ ]; Union[lst] PROG (PARI) upto(n) = {my(res = List()); for(i = 1, sqrtnint(n \ 4, 4), listput(res, 4*i^4) ); forprime(p = 3, log(n), pp = p^p; for(k = 1, sqrtnint(n \ pp, p), listput(res, pp * k ^ p); ) ); listsort(res); res } \\ David A. Corneth, Jan 12 2019 CROSSREFS Cf. A093324 (least k such that n^k+k is prime), A097764 (numbers of the form (kp)^p). Cf. A072883, A239666, A303121, A303122. Sequence in context: A141091 A078111 A186882 * A308474 A058067 A294038 Adjacent sequences:  A097789 A097790 A097791 * A097793 A097794 A097795 KEYWORD nonn AUTHOR T. D. Noe, Aug 24 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:10 EDT 2019. Contains 328373 sequences. (Running on oeis4.)