

A198334


The Balaban centric index of the rooted tree having MatulaGoebel number n.


2



1, 4, 5, 5, 8, 8, 10, 10, 9, 9, 9, 13, 13, 13, 12, 17, 13, 14, 17, 14, 14, 12, 14, 20, 13, 14, 19, 20, 14, 17, 12, 26, 13, 14, 17, 21, 20, 20, 17, 21, 14, 21, 20, 17, 22, 19, 17, 29, 21, 18, 17, 21, 26, 26, 16, 29, 21, 17, 14, 24, 21, 13, 26, 37, 18, 18, 20, 21, 22, 24, 21, 30, 21, 21, 23, 29, 18, 24, 17, 30
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Balaban centric index of a tree is the sum of the squares of the components of the pruning partition of the tree. The pruning partition of a tree is the reverse sequence of the number of vertices of degree 1, deleted at the successive prunings. By pruning we mean the deletion of vertices of degree 1 and of their incident edges. See the Balaban reference (p. 360) and/or the TodeschiniConsonni reference (p. 42).
The MatulaGoebel number of a rooted tree can be defined in the following recursive manner: to the onevertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the tth prime number, where t is the MatulaGoebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the MatulaGoebel numbers of the m branches of T.


REFERENCES

A. T. Balaban, Chemical graphs, Theoret. Chim. Acta (Berl.) 53, 355375, 1979.
F. Goebel, On a 11correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131142.
I. Gutman and YeongNan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 1722.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, WileyVCH, 2000.


LINKS

Table of n, a(n) for n=1..80.
Index entries for sequences related to MatulaGoebel numbers


FORMULA

A198334(n) = sum of the squares of the components of A198333(n).


EXAMPLE

a(7)=10 because the rooted tree with MatulaGoebel number 7 is Y; it has 3 vertices of degree 1 and after the first pruning we obtain the 1vertex tree. Thus, the pruning partition is [1,3] and 1^2 + 3^2 = 10.


MAPLE

with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))1 end if end proc: c := proc (n) local r, s, b: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: b := proc (n) if n = 1 then 1 elif n = 2 then 1 elif bigomega(n) = 1 then ithprime(b(pi(n))) else b(r(n))*b(s(n)) end if end proc: if n = 1 then 1 elif bigomega(n) = 1 then b(pi(n)) else b(r(n))*b(s(n)) end if end proc: MS := proc (m) local A, i: A[m, 1] := m: for i from 2 while 1 < A[m, i1] do A[m, i] := c(A[m, i1]) end do: if A[m, i2] = 2 then [seq(A[m, j], j = 1 .. i2)] else [seq(A[m, j], j = 1 .. i1)] end if end proc: PP := proc (n) local NVP, q: q := nops(MS(n)): NVP := map(N, MS(n)): [NVP[q], seq(NVP[qj]NVP[qj+1], j = 1 .. nops(NVP)1)] end proc: a := proc (n) options operator, arrow: add(PP(n)[k]^2, k = 1 .. nops(PP(n))) end proc: seq(a(n), n = 1 .. 80);


CROSSREFS

Cf. A198333
Sequence in context: A082448 A190796 A070783 * A055593 A268604 A246823
Adjacent sequences: A198331 A198332 A198333 * A198335 A198336 A198337


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Nov 27 2011


STATUS

approved



