login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058611
McKay-Thompson series of class 29A for Monster.
3
1, 0, 3, 4, 7, 10, 17, 22, 32, 44, 62, 80, 112, 144, 193, 248, 323, 410, 530, 664, 845, 1054, 1324, 1634, 2037, 2498, 3082, 3760, 4601, 5580, 6789, 8186, 9891, 11876, 14271, 17052, 20393, 24260, 28876, 34224, 40557, 47888, 56540, 66516, 78240
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(4*Pi*sqrt(n/29)) / (sqrt(2)*29^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
G.f.: - 2 + x^(-1) * ( G(x) * G(x^29) + x^6 * H(x) * H(x^29) )^2 where G() is g.f. of A003114 and H() is g.f. of A003106. - G. C. Greubel, Jun 18 2018
EXAMPLE
T29A = 1/q + 3*q + 4*q^2 + 7*q^3 + 10*q^4 + 17*q^5 + 22*q^6 + 32*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; e26B := ((eta[q^2]*eta[q^13])/(eta[q] *eta[q^26]))^2; G[q_] := QPochhammer[q^2, q^5]*QPochhammer[q^3, q^5]* QPochhammer[q^5]/QPochhammer[q]; H[q_] := QPochhammer[q, q^5]* QPochhammer[q^4, q^5]*QPochhammer[q^5]/QPochhammer[q]; a:= CoefficientList[Series[q*(-2 + (1/q)*(G[q]*G[q^29] + q^6*H[q]*H[q^29])^2 ), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
CROSSREFS
Cf. A136570 (same sequence except for n=0).
Sequence in context: A256912 A378414 A134591 * A357459 A098613 A261037
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved