login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098613 Expansion of psi(x^2) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions. 6
1, 1, 3, 4, 7, 10, 17, 23, 35, 48, 69, 93, 131, 173, 236, 310, 413, 536, 704, 903, 1170, 1489, 1904, 2403, 3044, 3811, 4784, 5951, 7409, 9157, 11325, 13912, 17095, 20891, 25519, 31029, 37708, 45632, 55184, 66495, 80050, 96064, 115173, 137680, 164425, 195860 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

This sequence convolved with A000009 gives A001936. - Gary W. Adamson, Mar 24 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of chi(x) / chi(-x^2)^3 = 1 / (chi(-x)* chi(-x^2)^2) = 1 / (chi(x)^2 * chi(-x)^3) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 07 2015

Expansion of q^(-5/24) * eta(q^4)^2 / (eta(q) * eta(q^2)) in powers of q.

Euler transform of period 4 sequence [ 1, 2, 1, 0, ...].

G.f. A(x) is the limit of x^(n^2+n) * P_{2*n+1}(1/x)/2 where P_n(q) = Sum_{k=0..n} C(n, k; q) and C(n, k; q) is the q-binomial coefficients. See A083906 for P_n(q).

G.f.: (Sum_{k>0} x^(k^2-k)) / (Product_{k>0} (1 - x^k)).

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015

G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 8^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143161. - Michael Somos, Sep 07 2015

EXAMPLE

G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 23*x^7 + ...

G.f. = q^5 + q^29 + 3*q^53 + 4*q^77 + 7*q^101 + 10*q^125 + 17*q^149 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Oct 29 2013 *)

a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^2, x^4]^2), {x, 0, n}]; (* Michael Somos, Oct 29 2013 *)

nmax = 40; CoefficientList[ Series[Product[(1 + x^k) * (1 + x^(2*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^2, x^2]^3, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x]^2 QPochhammer[ -x, x]^3, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^2, x^2]^2, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1)-1)\2, x^(k^2+k)) / eta(x + x * O(x^n)), n))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)), n))};

(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, 2*n+1, prod(i=1, k, (1 - x^(2*n+2 - i)) / (1 - x^i))) / 2, n^2))};

CROSSREFS

Cf. A029552, A083906, A143161.

Sequence in context: A256912 A134591 A058611 * A261037 A280423 A143607

Adjacent sequences:  A098610 A098611 A098612 * A098614 A098615 A098616

KEYWORD

nonn

AUTHOR

Michael Somos, Sep 17 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:04 EDT 2019. Contains 322461 sequences. (Running on oeis4.)