login
A096563
McKay-Thompson series of class 25a for the Monster group.
2
1, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, 0, -1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, -2, 0, 0, 2, 0, 3, 0, 0, -1, 0, -2, 0, 0, -3, 0, 0, 0, 0, -1, 0, 2, 0, 0, 3, 0, -4, 0, 0, 3, 0, 4, 0, 0, -2, 0, -3, 0, 0, -5, 0, 1, 0, 0, -1, 0, 3, 0, 0, 6, 0, -6, 0, 0
OFFSET
-1,41
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
T. Horie and N. Kanou, Certain modular functions similar to the Dedekind eta function, Abh. Math. Sem. Univ. Hamburg 72 (2002), 89-117. MR1941549 (2003j:11043)
FORMULA
Expansion of 1 + eta(q) / eta(q^25) in powers of q.
G.f.: 1 + x^-1 * (Prod_{k>0} (1 - x^k) / (1 - x^(25*k))).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u^2 - v)* (u - v^2) - 2*(u - 1)^2 - 2*(v - 1)^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + u*w + w^2 - v - v^2*(u + w) - 2*(u + w) + 4.
a(n) = A096562(n) unless n=0.
EXAMPLE
T25a = 1/q - q + q^4 + q^6 - q^11 - q^14 + q^21 + q^24 - q^26 + q^29 + q^31 + ...
MATHEMATICA
a[ n_] := With[ {m = n + 1}, SeriesCoefficient[ q + Product[ 1 - q^k, {k, m}] / Product[ 1 - q^k, {k, 25, m, 25}], {q, 0, m}]];
QP = QPochhammer; s = q + QP[q]/QP[q^25] + O[q]^110; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015 *)
PROG
(PARI) {a(n) = my(A, m); if( n<-1, 0, m=5; A = x + O(x^6); while( m < n+2, m*=5; A = x * subst( (A * (1 - 2*A + 4*A^2 - 3*A^3 + A^4) / (1 + 3*A + 4*A^2 + 2*A^3 + A^4) / x)^(1/5), x, x^5)); polcoeff( 1/A - A, n))}
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( x + eta(x + A)/ eta(x^25 + A), n))}
CROSSREFS
Sequence in context: A372357 A216577 A096562 * A216512 A078359 A107329
KEYWORD
sign
AUTHOR
Michael Somos, Jul 02 2004
STATUS
approved