OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..200
Simon Plouffe, Master's Thesis, Uqam 1992, Approximations of generating functions and a few conjectures, arXiv:0911.4975 [math.NT], 2009.
R. P. Stanley, Differentiably finite power series, European J. Combin., 1 (1980), 175-188.
FORMULA
The lgdegf is (2+x+x^4+x^5-2*x^3-2*x^2)/(x-1)^2/(x+1)^2, conjectured in Simon Plouffe's Master's Thesis, Uqam 1992. Lgdegf is the logarithmic derivative of f(x), the g.f. is exponential.
MATHEMATICA
Range[0, 21]! CoefficientList[Series[((1 + x)/(1 - x))^(1/4) Exp[(x (x^3 + 2 x^2 - x - 3))/(2 (x - 1) (x + 1))], {x, 0, 21}], x] (* Vincenzo Librandi, Aug 02 2015 *)
PROG
(PARI) Vec(serlaplace(((1+x)/(1-x))^(1/4) * exp((x*(x^3 + 2*x^2 - x - 3))/(2*(x-1)*(x+1)))) + O(x^33)) \\ Gheorghe Coserea, Aug 03 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved