login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101127 McKay-Thompson series of class 12D for the Monster group. 2
1, 8, 28, 64, 134, 288, 568, 1024, 1809, 3152, 5316, 8704, 13990, 22208, 34696, 53248, 80724, 121240, 180068, 264448, 384940, 556064, 796760, 1132544, 1598789, 2243056, 3127360, 4333568, 5971922, 8188096, 11170160, 15163392, 20491033 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

Index entries for McKay-Thompson series for Monster simple group

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Infinite Product

FORMULA

Expansion of q^(1/3) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^8 in powers of q.

Euler transform of period 4 sequence [8, -8, 8, 0, ...].

Given g.f. A(x), B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v*(u^3+v^3) -(u*v)^3 + 15*(u*v)^2 - 32*u*v + 16.

G.f.: (Product_{k>0} (1 + x^(2*k-1)))^8.

A007259(n) = (-1)^n * a(n). Convolution square of A112160.

a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015

Expansion of chi(x)^8 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 12 2017

G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018

EXAMPLE

T12D = 1/q + 8*q^2 + 28*q^5 + 64*q^8 + 134*q^11 + 288*q^14 + 568*q^17 + ...

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^8, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^8, {x, 0, n}]; (* Michael Somos, Sep 12 2017 *)

PROG

(PARI) {a(n) = my(A); if(n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^8, n))};

(PARI) {a(n) = my(A); if(n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, (n+1)\2, 1 + x^(2*k-1), 1 + A)^8, n))};

CROSSREFS

cf. A007259, A112160.

Sequence in context: A212515 A007331 A002408 * A007259 A134747 A083013

Adjacent sequences:  A101124 A101125 A101126 * A101128 A101129 A101130

KEYWORD

nonn

AUTHOR

Michael Somos, Dec 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 16:32 EST 2019. Contains 319309 sequences. (Running on oeis4.)