This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002408 Expansion of 8-dimensional cusp form. 6
 0, 1, -8, 28, -64, 126, -224, 344, -512, 757, -1008, 1332, -1792, 2198, -2752, 3528, -4096, 4914, -6056, 6860, -8064, 9632, -10656, 12168, -14336, 15751, -17584, 20440, -22016, 24390, -28224, 29792, -32768, 37296, -39312, 43344, -48448, 50654, -54880, 61544, -64512, 68922 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially the same as A007331. Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). "For Gamma, it is known that any modular form is a weighted homogeneous polynomial in Theta_Z, which has weight 1/2 and the modular form delta_8(t) := e^{Pi i tau} prod_{m=1..infty} ((1-e^{ Pi i m tau}) (1+e^{2 Pi i m tau}))^8 = e^{ Pi i tau} - 8 e^{2 Pi i m tau} +28 e^{3 Pi i m tau} -64 e^{4 Pi i m tau} +126 e^{5 Pi i m tau} ... of weight 4." [Elkies, p. 1242] REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 187. N. D. Elkies. Lattices, Linear Codes and Invariants, Part I. Amer. Math. Soc., 47 (No. 10, Nov. 2000), 1238-1245, see p. 1242. F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 p 133. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (eta(q)* eta(q^4) / eta(q^2))^8 in powers of q. - Michael Somos, Jul 16 2004 Euler transform of period 4 sequence [ -8, 0, -8, -8, ...]. - Michael Somos, Jul 16 2004 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = +u^4*w*v + 16*u^3*w*v^2 + 16*u^2*w^2*v^2 + 256*u^3*w^3 + 256*u^3*w^2*v + 4096*u^2*w^3*v + 4096*u*w^4*v + 4096*u*w^3*v^2 - u^2*v^4 - 16*u^2*w*v^3 - 256*u*w^2*v^3 - 256*w^2*v^4. - Michael Somos, May 31 2005 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^4 + u1^3*u2*u3^3*u6 + 2*u1*u2^3*u3*u6^3 - u2^4*u3^4. Expansion of q * psi(-q)^8 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 20 2008 a(n) is multiplicative with a(2^e) = -8^e if e>0, a(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1). - Michael Somos, Mar 20 2008 G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t). G.f.: x * (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(4*k)))^8. a(n) = -(-1)^n * A007331(n). a(2*n) = -8 * A007331(n). a(2*n + 1) = A045823(n). - Michael Somos, May 25 2014 EXAMPLE G.f. = q - 8*q^2 + 28*q^3 - 64*q^4 + 126*q^5 - 224*q^6 + 344*q^7 ... MAPLE q*product((1-q^(2*k-1))^8*(1-q^(4*k))^8, k=1..75); MATHEMATICA a[0] = 0; a[n_] := -(-1)^n*Sum[ Mod[n/d, 2]*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jan 27 2012, after Michael Somos *) a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^8, {q, 0, n}]; (* Michael Somos, May 25 2014 *) PROG (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */ (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (prod(k=1, n, (1 -( k%4==0) * x^k) * (1 - (k%2==1) * x^k), 1 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */ (PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */ (Sage) A = ModularForms( Gamma0(4), 4, prec=70) . basis(); A[1] - 8*A[2] # _Michael Somos, May 25 2014 (Python) from sympy import divisors def a(n): return 0 if n==0 else -(-1)**n*sum([((n/d)%2)*d**3 for d in divisors(n)]) print [a(n) for n in xrange(101)] # Indranil Ghosh, Jun 24 2017 CROSSREFS Cf. A007331, A045823. Sequence in context: A299289 A212515 A007331 * A101127 A007259 A134747 Adjacent sequences:  A002405 A002406 A002407 * A002409 A002410 A002411 KEYWORD sign,nice,easy,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 13:01 EDT 2019. Contains 328222 sequences. (Running on oeis4.)