OFFSET
0,2
COMMENTS
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>5, a(n-6) is equal to the number of (n+6)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Herbert Izbicki, Über Unterbaeume eines Baumes, Monatshefte für Mathematik, Vol. 74 (1970), pp. 56-62.
Herbert Izbicki, Über Unterbaeume eines Baumes, Monatshefte für Mathematik, Vol. 74 (1970), pp. 56-62.
Milan Janjic, Two Enumerative Functions.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
FORMULA
G.f.: 1/(1-2*x)^7.
a(n) = 2*a(n-1) + A054849(n-1).
For n>0, a(n) = 2*A082140(n).
a(n) = Sum_{i=6..n+6} binomial(i,6)*binomial(n+6,i). Example: for n=5, a(5) = 1*462 + 7*330 + 28*165 + 84*55 + 210*11 + 462*1 = 14784. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 47/5 - 12*log(2).
Sum_{n>=0} (-1)^n/a(n) = 2916*log(3/2) - 5907/5. (End)
MAPLE
A002409:=-1/(2*z-1)**7; # Simon Plouffe in his 1992 dissertation
seq(binomial(n+6, 6)*2^n, n=0..22); # Zerinvary Lajos, Jun 16 2008
MATHEMATICA
CoefficientList[Series[1/(1-2x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[ {14, -84, 280, -560, 672, -448, 128}, {1, 14, 112, 672, 3360, 14784, 59136}, 40] (* Harvey P. Dale, Jan 24 2022 *)
PROG
(Magma) [2^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Henry Bottomley and James A. Sellers, Apr 15 2000
Typo in definition corrected by Zerinvary Lajos, Jun 16 2008
STATUS
approved