login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054851
a(n) = 2^(n-7)*binomial(n,7). Number of 7D hypercubes in an n-dimensional hypercube.
16
1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, 5857280, 19914752, 65175552, 206389248, 635043840, 1905131520, 5588385792, 16066609152, 45364543488, 126012620800, 344876646400, 931166945280, 2483111854080
OFFSET
7,2
COMMENTS
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>6, a(n) is equal to the number of (n+7)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
LINKS
Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792, 1024,-256).
FORMULA
a(n) = 2*a(n-1) + A002409(n-1).
a(n+8) = A082141(n+1)/2.
G.f.: x^7/(1-2*x)^8. - Colin Barker, Sep 04 2012
a(n) = Sum_{i=7..n} binomial(i,7)*binomial(n,i). Example: for n=11, a(11) = 1*330 + 8*165 + 36*55 + 120*11 + 330*1 = 5280. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=7} 1/a(n) = 14*log(2) - 259/30.
Sum_{n>=7} (-1)^(n+1)/a(n) = 10206*log(3/2) - 124117/30. (End)
MAPLE
seq(binomial(n+7, 7)*2^n, n=0..21); # Zerinvary Lajos, Jun 23 2008
MATHEMATICA
Table[2^(n-7)*Binomial[n, 7], {n, 7, 30}] (* G. C. Greubel, Aug 27 2019 *)
PROG
(PARI) vector(23, n, 2^(n-1)*binomial(n+6, 7)) \\ G. C. Greubel, Aug 27 2019
(Magma) [2^(n-7)*Binomial(n, 7): n in [7..30]]; // G. C. Greubel, Aug 27 2019
(GAP) List([7..30], n-> 2^(n-7)*Binomial(n, 7)); # G. C. Greubel, Aug 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Apr 14 2000
EXTENSIONS
More terms from James A. Sellers, Apr 15 2000
STATUS
approved