login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007817 Number of abstract simplicial 2-complexes on {1,2,3,...,n+4} which triangulate a Moebius band in such a way that all vertices lie on the boundary and are traversed in the order 1,2,3,... as one goes around the boundary. 1
1, 14, 113, 720, 4033, 20864, 102356, 483680, 2223482, 10009570, 44330931, 193798624, 838329841, 3595080184, 15305823256, 64766503744, 272635026526, 1142528179324, 4769415499234, 19842220567264, 82303947852506, 340491603805344, 1405318295426488, 5788074933453632, 23794580648906708, 97653338015578634, 400157876088981431 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

REFERENCES

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.44.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 5..150

Marc Noy and Juanjo Rué, Counting polygon dissections in the projective plane, Advances Applied Math., vol.421, (2008), pp.599-619.

FORMULA

G.f.: x^2*((2-5*x-4*x^2)+sqrt(1-4*x)*(-2+x+2*x^2))/((1-4*x)*(1-4*x+2*x^2+sqrt(1-4*x)*(1-2*x))). [from the Stanley reference, Joerg Arndt, Apr 20 2011]

a(n) = 4^(n-1)-2*(29*n^3-77*n^2+106*n-88)*binomial(2*n-5,n-1)/((n-3)*(n+1)*(n+2)). - Mark van Hoeij, Oct 30 2011

MATHEMATICA

a[n_] := a[n] = (4^n*(n-4)(n-3)(n*(29n-144) + 100) + 16n*(n*(n*(n*(58n-299) + 597) - 706) + 440)*a[n-1])/(8(n-1)(n+2)(n*(n*(29n-164) + 347) - 300)) ; a[5] = 1; Table[a[n], {n, 5, 31}](* Jean-François Alcover, Nov 16 2011, after Mark van Hoeij *)

PROG

(PARI) x='x+O('x^66);

gf=x^2*((2-5*x-4*x^2)+sqrt(1-4*x)*(-2+x+2*x^2))/((1-4*x)*(1-4*x+2*x^2+sqrt(1-4*x)*(1-2*x)));

Vec(gf) /* Joerg Arndt, Apr 20 2011 */

(MAGMA) [4^(n-1)-2*(29*n^3-77*n^2+106*n-88)*Binomial(2*n-5, n-1)/((n-3)*(n+1)*(n+2)) : n in [5..30]]; // Vincenzo Librandi, Nov 17 2011

CROSSREFS

Sequence in context: A004408 A002409 A155655 * A285147 A044346 A044727

Adjacent sequences:  A007814 A007815 A007816 * A007818 A007819 A007820

KEYWORD

nonn,easy,nice,changed

AUTHOR

Victor Reiner (reiner(AT)math.umn.edu), Paul Edelman (edelman(AT)math.umn.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 17 05:23 EDT 2017. Contains 293467 sequences.