login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002412 Hexagonal pyramidal numbers, or greengrocer's numbers.
(Formerly M4374 N1839)
52
0, 1, 7, 22, 50, 95, 161, 252, 372, 525, 715, 946, 1222, 1547, 1925, 2360, 2856, 3417, 4047, 4750, 5530, 6391, 7337, 8372, 9500, 10725, 12051, 13482, 15022, 16675, 18445, 20336, 22352, 24497, 26775, 29190, 31746, 34447, 37297, 40300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of (1, 6, 9, 4, 0, 0, 0,...). - Gary W. Adamson, Oct 16 2007

a(n) is the sum of the maximum(m,n) over {(m,n): m,n in positive integers, m<=n}. - Geoffrey Critzer, Oct 11 2009

We obtain these numbers for d=2 in the identity n*(n*(d*n-d+2)/2)-sum(k*(d*k-d+2)/2, k=0..n-1) = n*(n+1)*(2*d*n-2*d+3)/6 (see Klaus Strassburger in Formula lines). - Bruno Berselli, Apr 21 2010, Nov 16 2010

q^a(n) is the Hankel transform of the q-Catalan numbers. - Paul Barry, Dec 15 2010

Row 1 of the convolution array A213835. - Clark Kimberling, Jul 04 2012

From Ant King, Oct 24 2012: (Start)

For n>0, the digital roots of this sequence A010888(A002412(n)) form the purely periodic 27-cycle {1,7,4,5,5,8,9,3,3,4,1,7,8,8,2,3,6,6,7,4,1,2,2,5,6,9,9}.

For n>0, the units' digits of this sequence A010879(A002412(n)) form the purely periodic 20-cycle {1,7,2,0,5,1,2,2,5,5,6,2,7,5,0,6,7,7,0,0}.

(End)

Partial sums of A000384. - Omar E. Pol, Jan 12 2013

Row sums of A094728. - J. M. Bergot, Jun 14 2013

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 0..10000 (first 1000 terms computed by T. D. Noe)

B. Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number

Index to sequences with linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = n(n + 1)(4n - 1)/6.

G.f.: x*(1+3*x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation.

a(n) = n^3 - sum(i^2, i=1..(n-1)). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Partial sums of n odd triangular numbers, e.g., a(3) = t(1)+t(3)+t(5) = 1+6+15 = 22. - Jon Perry, Jul 23 2003

a(n) = sum{i=0..n-1} (n - i)(n + i). - Jon Perry, Sep 26 2004

a(n) = n*A000292(n) - (n-1)*A000292(n-1) = n*binomial((n+2),3) - (n-1)*binomial((n+1),3); e.g., a(5) = 95 = 5*35 - 4*20. - Gary W. Adamson, Dec 28 2007

a(n) = sum{i=0..n} 2i^2 + 3i + 1, for n >= 0 (Omits the leading 0). - William A. Tedeschi, Aug 25 2010

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), with a(0)=0, a(1)=1, a(2)=7, a(3)=22. - Harvey P. Dale, Jul 16 2011

a(n) = sum a*b, where the summing is over all unordered partitions 2*n = a+b. - Vladimir Shevelev, May 11 2012

From Ant King, Oct 24 2012: (Start)

a(n) = a(n-1) + n(2n-1).

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 4.

a(n) = (n+1)*(2*A000384(n) + n)/6 = (4*n-1)*A000217(n)/3.

a(n) = A000292(n) + 3*A000292(n-1) = A002411(n) + A000292(n-1).

a(n) = binomial(n+2,3) + 3*binomial(n+1,3) = (4*n-1)*binomial(n+1,2)/3.

Sum_{n>=0} 1/a(n) = 6*(12*log(2)-2*Pi-1)/5 = 1.2414...

(End)

a(n) = sum(i=1..n, sum(j=1..n, max(i,j))) = sum(i<=n, i*(2n-i)). - Enrique Pérez Herrero, Jan 15 2013

a(n) = A005900(n+1) - A000326(n+1) = Octahedral - Pentagonal Numbers. - Richard R. Forberg, Aug 07 2013

a(n) = n*A000217(n) + sum( A000217(i), i=0..n-1 ). - Bruno Berselli, Dec 18 2013

a(n) = 2n * A000217(n) - A000330(n). - J. M. Bergot, Apr 05 2014

EXAMPLE

Let n=5, 2*n=10. Since 10=1+9=2+8=3+7=4+6=5+5, then a(5)=1*9+2*8+3*7+4*6+5*5=95. - Vladimir Shevelev, May 11 2012

MAPLE

seq(sum(i*(2*k-i), i=1..k), k=0..100); # Wesley Ivan Hurt, Sep 25 2013

MATHEMATICA

Figurate[ ngon_, rank_, dim_] := Binomial[rank + dim - 2, dim - 1] ((rank - 1)*(ngon - 2) + dim)/dim; Table[ Figurate[6, r, 3], {r, 0, 40}] (* Robert G. Wilson v, Aug 22 2010 *)

Table[n(n+1)(4n-1)/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 7, 22}, 40] (* Harvey P. Dale, Jul 16 2011 *)

PROG

(PARI) v=vector(40, i, t(i)); s=0; forstep(i=1, 40, 2, s+=v[i]; print1(s", "))

(Maxima) A002412(n):=n*(n+1)*(4*n-1)/6$ makelist(A002412(n), n, 0, 20); /* Martin Ettl, Dec 12 2012 */

CROSSREFS

Bisection of A002623. Equals A000578(n) - A000330(n-1).

Cf. A000292, A016061.

a(n) = A093561(n+2, 3), (4, 1)-Pascal column.

Cf. A220084 for a list of numbers of the form n*P(k,n)-(n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number (see Adamson's formula).

Cf. similar sequences listed in A237616.

Sequence in context: A014073 A129109 A224141 * A211652 A211650 A211792

Adjacent sequences:  A002409 A002410 A002411 * A002413 A002414 A002415

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 19:50 EST 2014. Contains 249865 sequences.