login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010879 Final digit of n. 104
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also decimal expansion of 137174210/1111111111 = 0.1234567890123456789012345678901234... - Jason Earls (zevi_35711(AT)yahoo.com), Mar 19 2001

In general the base k expansion of A062808(k)/A048861(k) (k>=2) will produce the numbers 0,1,2,...,k-1 repeated with period k, equivalent to the sequence n mod k. The k-digit number in base k 123...(k-1)0 (base k) expressed in decimal is A062808(k), whereas A048861(k) = k^k-1. In particular, A062808(10)/A048861(10)=1234567890/9999999999=137174210/1111111111.

a(n) = n^5 mod 10. - Zerinvary Lajos, Nov 04 2009

LINKS

Table of n, a(n) for n=0..80.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Index entries for sequences related to final digits of numbers

FORMULA

a(n) = n mod 10.

Periodic with period 10.

From Hieronymus Fischer, May 31 and Jun 11 2007: (Start)

Complex representation: a(n) = 1/10*(1-r^n)*sum{1<=k<10, k*product{1<=m<10,m<>k, (1-r^(n-m))}} where r=exp(Pi/5*i) and i=sqrt(-1).

Trigonometric representation: a(n) = (256/5)^2*(sin(n*Pi/10))^2 * sum{1<=k<10, k*product{1<=m<10,m<>k, (sin((n-m)*Pi/10))^2}}.

G.f.: g(x) = (sum{1<=k<10, k*x^k})/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8) ) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ).

Also: g(x) = x(9x^10-10x^9+1)/((1-x^10)(1-x)^2).

a(n) = n mod 2+2*(floor(n/2)mod 5) = A000035(n) + 2*A010874(A004526(n)).

Also: a(n) = n mod 5+5*(floor(n/5)mod 2) = A010874(n)+5*A000035(A002266(n)). (End)

a(n) = 10*{n/10}, where {x} means fractional part of x. - Enrique Pérez Herrero, Jul 30 2009

a(n) = n - 10*A059995(n). - Reinhard Zumkeller, Jul 26 2011

a(n) = n^k mod 10, for k > 0, where k mod 4 = 1. - Doug Bell, Jun 15 2015

MAPLE

A010879 := proc(n)

    n mod 10 ;

end proc: # R. J. Mathar, Jul 12 2013

MATHEMATICA

Table[10*FractionalPart[n/10], {n, 1, 300}] (* Enrique Pérez Herrero, Jul 30 2009 *)

LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 81] (* Ray Chandler, Aug 26 2015 *)

PROG

(Sage) [power_mod(n, 5, 10)for n in xrange(0, 81)] # Zerinvary Lajos, Nov 04 2009

(PARI) a(n)=n%10 \\ Charles R Greathouse IV, Jun 16 2011

(Haskell)

a010879 = (`mod` 10)

a010879_list = cycle [0..9]  -- Reinhard Zumkeller, Mar 26 2012

(MAGMA) [n mod(10): n in [0..90]]; // Vincenzo Librandi, Jun 17 2015

CROSSREFS

Cf. A034948, A059988, A048861, A062808, A086457, A086458.

Cf. A008959, A008960, A070514. - Doug Bell, Jun 15 2015

Partial sums: A130488. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487.

Sequence in context: A134778 A118943 A217657 * A179636 A175419 A175422

Adjacent sequences:  A010876 A010877 A010878 * A010880 A010881 A010882

KEYWORD

nonn,base,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Formula section edited for better readability by Hieronymus Fischer, Jun 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 21 04:27 EDT 2017. Contains 289632 sequences.